Unit I	Basic Electrical Fundamentals	70
S. N.		Marks
	Permeability in a magnetic circuit corresponds toin	
.0	an electric circuit	
	A. Resistance	
C		
C	B. Resistivity	5
1.	C. Conductivity	~?
	D. Conductance	1M
	Answer- C. Conductivity	
	Explanation: For electric circuits we define conductance for	
	magnetic circuits we define Permeability.	
C	Those magnetic materials are best suited for making	
C	armature and transformer cores which have	
	permeability andhysteresis loss	2
2.	A. High, high	
1	B. Low, high	1M
. 0	C. High, low	
	D. Low, low	
	Answer- C. High, low	
(2)	E Evalenation Expansions transform gaves the normachility of	
	E Explanation: For making transform cores the permeability of material should be high hysteresis loss should be low	

Mailcshinia

Mailcshinia

Mailcshir

Mailceinia

		- GN
Majics	The property of a material which opposes the creation of magnetic flux in it is known as A. Reluctivity	Mailes
3	B. Magnetomotive force C. Permeance D. Reluctance Answer- D. Reluctance Explanation: Reluctance is defined as the opposition of	1M
	magnetic flux in magnetic circuit. The unit of magnetic flux is A. Henry B. Weber C. Ampere-turn/weber	Sil
4.	D. Ampere/meter Answer- B. Weber Explanation: The total number of magnetic lines of force in a magnetic field is called as magnetic flux & its unit is Weber (wb)	1M
5.	The unit of reluctance is A. Meter/henry B. Henry/meter C. Henry D. 1/henry Answer-D. 1/henry Explanation: The unit of reluctance is ampere-turns per	1M
Majileshii	weber i.e 1/Henry.	Mailce

collina		
*100	Reciprocal of reluctance is	4/9
	A. Reluctivity	200
	B. Permeance	
. 0.	C. Permiability	
6.	D. Susceptibility	1M
*(C5)	iics) iics)	***
Mar	Answer- B. Permeance	War.
	Explanation: Permeance is reciprocal of reluctance is a	
	measure of magnetic flux for a number of current turns in a	
.0.	magnetic circuit.	
ii cshiin	Conductivity is analogous to	,;(C
	A. Retentivity	Sor.
	B. Resistivity	
	C. Permeability	
	D. Inductance	
57.	Answer- C. Permeability	
	Explanation:Conductivity of a metallic wire is defined as its	1M
.0.0	ability to allow electric charges or heat to pass through it. It is	W.O.
	analogous to permeability. Permeability is the measure of	
	magnetization produced in a material in response to an	
	applied magnetic field.	
. [5]	. (5)	
		100

iico	An air gap is usually inserted in magnetic circuits to	diles
A.	Increase m.m.f	900
В.	Increase the flux	
C.	Prevent saturation	
D.	None of the above	
	Answer-C. Prevent Saturation	
5	Explanation: An air gap is usually inserted in magnetic	5
	circuits to Prevent saturation. One of main reasons for an Air	
	Gap is to increase the reluctance of the magnetic circuit. The	200
	amount of air or another non-magnetic material like a fibre	
	plate or fibre board increases the reluctance of the circuit,	
8.	thereby increasing the amount of current that we could put in	1M
	a coil before we reach saturation. Also, the air gaps help the	
	magnetic flux to expand outside the magnetic circuit.	
Mailes	$\begin{array}{c c} & \text{Magnetic} & \text{Mean core} \\ & \text{flux lines} & \text{length } l_{\text{c}} \\ & \text{Air gap} & \text{Air gap,} \\ & \text{length } g & \text{Permeability } \mu_{0}, \\ & \text{Area } A_{\text{g}} \\ & \text{Winding,} & \text{Magnetic core} \end{array}$	Mailes
Silicipa	N turns permeability μ , Area $A_{\rm c}$	Silestil
000	Magnetic effect of current was discovered by	100
	A. Oersted	
	B. Faraday	
9	C. Bohr	
	D. Ampere	1M
	Answer- A. Oersted	
	Explanation: Oersted showed that electricity and magnetism	
	were related phenomena.	
•		•

Inside the magnet, the field lines moves	(5)
A. From north to south	
B. from south the north	.00
C. away from south pole	
10. D. away from north pole	1M
Answer: - A. From north to south	1M
Explanation: According to properties of Magnetic field inside	• •
the magnet moves from south to north pole.	
	05
Direction of rotation of a coil in electric motor is determined	
by	
A. fleming's right hand rule	
B. fleming's left hand rule	
C. faraday law of electromagnetic inductors	
D. None of above	• •
Answer: - B. Fleming's left hand rule	60
::(0)	110
	IIVI
Explanation: The Fleming'sleft-hand rule is used to help	
remember the direction of the magnetic field, the direction of	, in the second second
the current, and the direction of magnetic thrust force when a	
conducting rod is introduced to a magnetic field. It is	
commonly used to determine the direction of motion of an	
electric motor.	ci.
We can induce the current in a coil by	*(0)
A. moving the coil in a magnetic field	2
B. by changing the magnetic field around it	(),
C. by changing the orientation of the coil in the magnetic field	
12. D. All of above	
Answer: A. moving the coil in a magnetic field	1M
Answer. A. moving the con in a magnetic field	
Explanation: The method can be used to induce the potential	6
difference across the ends of a coil and hence to induce the	il v
difference across the chas of a contain hence to mude the	

CUII		
ai C	current.	dilos
W. C. C.	A D.C generator works on the principle of	100
	A. ohnis law	
	B. Joule's law of heating	
. 0.	C. faraday's law of electromagnetic induction.	
	D. none of the above	
5	Answer: C. Faraday's law of electromagnetic induction.	6
×10°	410°	×10°
	Explanation: DC generators generate electricity using the	
	principle of Faraday's law of electromagnetic induction. When	
13.	a conductor is placed in a varying magnetic field, an	
	electromotive force gets induced within the conductor.	1M
Maileshini	Pole Rotation	Maileshi
0	Which among the following is true about Faraday's law of	
	Induction?	
	A. An emf is induced in a conductor when it cuts the magnetic	
	flux	
	B. An emf is induced in a conductor when it moves parallel to	
14	the magnetic field	
14.	C. An emf is induced in a conductor when it moves	1M
·0·	perpendicular to the magnetic field	
	D. An emf is induced in a conductor when it is just entering a	
S.	magnetic field	ci()
**(0)	Answer: A. An emf is induced in a conductor when it cuts the	*:05
	magnetic flux	Sir

*(0)	*;C3 *;C3	.:(0
	Explanation: According to Faraday's law of electromagnetic	200
	induction, an emf is induced in a conductor when it cuts	
	across the flux of a magnetic field. If the two ends of the	
	conductor are connected to an outside circuit, the induced	
.0-	emf causes current to flow in the circuit.	
C.C.	What is proportional to the magnitude of the induced emf in	
; C3	the circuit?	.:(0
	A. Rate of change of current in the circuit	20,0
	B. Rate of change of resistance offered	
	C. Rate of change of magnetic flux	
	D. Rate of change of voltage	
. 0.	Answer: C. Rate of change of magnetic flux	
15.		1M
	Explanation: The magnitude of induced emf is equal is equal	
.:.05	to the time rate of change of magnetic flux. It is	.:.0
	mathematically expressed as:	
	$\varepsilon = -d\phi dt$	
	The negative sign indicates the direction of the emf induced.	
	This is Faraday's second law of electromagnetic induction.	
-30-	· · · · · · · · · · · · · · · · · · ·	
	Faraday's laws are result of the conservation of which	
5	quantity?	
NO S	A. Momentum	
	B. Energy	20.
	C. Charge	
16.	D. Magnetic field	434
	Answer: B. Energy	1M
100	Explanation: Faraday's laws are result of the conservation of	
	energy. These laws are based on the conversion of electrical	
6	energy into mechanical energy. Mechanical energy can be	
XIV-	converted into electrical energy such as in the example of a	
	dynamo. In the same way, electrical energy can be converted	

		20
	into mechanical energy such as in the example of electric	
	motor. Both of the above examples work on the principle of	
100	Faraday's law.	400
	The induced emf persists only as long as the change in	
	magnetic flux continues.	
	A. True	
	B. False	
S	Answer: A. True	5
17.	Explanation: According to Faraday's first law, whenever the	1M
20.	amount of magnetic flux linked with a circuit changes, an emf	20.
	is induced in the circuit. This induced emf persists as long as	
	he change in magnetic flux continues. Therefore, this is a true	
	statement.	
. 7		<u> </u>
	The polarity of induced emf is given by	
5	A. Ampere's circuital law	(5)
X U	B. Biot-Savart law	*10-
	C. Lenz's law	20.
	D. Fleming's right hand rule	
	Answer: C. Lenz's law	
18.	Explanation: Lenz's law is used to measure the polarity of	1M
:38	induced e.m.f. Ampere's law correlates with the magnetic	IIVI
	field induced in a coil. Biot-Savart law describes the magnetic	
S	field generated by a constant electric current. Fleming's right-	6
	hand rule gives the estimate that in which direction the	*(0-
20,	current will flow.	20,
	When an insulated wire coil is connected to a battery, the	+
	pointer of the galvanometer is deflected due to	
	\frac{1}{2}	
10	A. the induced current produced	
CIT	B. the coil acts like a magnet	1M
::(0)	C. the number of turns in the coil of the galvanometer is changed	::0
	-71	
	D. None of these	~0

	Answer: A. the induced current produced	
	Explanation: A galvanometer measures the amount of current	
400	flowing through the circuit. In a current flowing conductor	100
	connected to a battery, the pointer of the galvanometer	
	fluctuates and points to the amount of current flowing. Thus a	
	galvanometer measures the amount of induced current in the	
	circuit.	
	Give the SI unit of self-inductance.	
	A. Farad	
	B. Ampere	
400	C. Henry	400
	D. Maxwell	
20.	Answer: C. Henry	434
.05	Explanation: The self-inductance of a coil is said to be one	1M
	henry if an induced emf of one volt is set up in it when the	
.:.0	current in it changes at the rate of one ampere per second.	.:.0
	Self-inductance is defined as the induction of a voltage in a	
	current-carrying wire when the current in the wire itself is	
	changing.	
	Mutual inductance is called the inertia of electricity.	
.0-	A. True	
	B. False	
C.C.		c C
21.	Answer: B. False	::05
21.	Explanation: Self-induction of a coil is that the property by	1M
	which it tends to take care of the magnetic flux linked with it	
	and opposes any change within the flux by inducing a current	
	in it. This is the reason why self-induction is named inertia of	
.0-	electricity.	
	What is the self-inductance of the coil, if the magnetic flux of	
C 22	10 microwebers is linked with a coil when a current of 5 mA	G ()
×	flows through it?	1M
\O.\	A. 20 mH	200

.:.0	B. 5 mH	.:.0
	C. 2 mH	
	D. 250 mH	
	Answer: C	
	Explanation: Self-inductance = Magnetic flux x Current	
.0	Self-inductance = 10×10 ^-6 X 5×10^-3	
05	Self-inductance = $2 \times 10^{-3} \text{ H}$	
	Self-inductance = 2mH	
ijos	iles iles	il.
0.	What are the positive and negative terminals of direct current	0.0
	(DC) known to have?	
A.	fixed polarity	
	no polarity	
	always negative polarity	
	variable polarity	
69,		•.0
23.	Answer:A. Fixed polarity	1M
	Explanation: The direction and magnitude of the current, in a	400
	Direct Current (DC), do not change. Simply, both positive and	
	negative terminals of a battery are always positive and	
.0	negative. Therefore, the current that flows always is in the	
0	same direction between both terminals. Examples: Fuel cells,	
collin	Batteries, and Solar cells	
	The peak value of alternating supply is 600 V. What is its rms	
	voltage?	23,
a.	410 V	
	312.5 V	
24. c.	424.3 V	
	130 V	1M
	Answer: C. 424.3 V	
	Explanation: Given, the peak value of alternating voltage,	die
No		100

**(03	$V_0 = 600 \text{ V}$	i kilos
	We have, rms voltage, $V_{\rm rms} = V_0/\sqrt{2} = 600/1.414 = 424.3 \text{ V}$	0.00
	Find the average value of current when the current that are	
	equidistant are 4A, 5A and 6A.	
	A. 5A	
	B. 6A	
	C. 15A	
25.	D. 10A	1M
		11/1
0.	Answer: A. 5A	~ O.
	Explanation: The average value of current is the sum of all the	
	currents divided by the number of currents. Therefore	
	average current = $(5+4+6)/3=5A$.	
3	RMS stands for	+
	A. Root Mean Square	
5	B. Root Mean Sum	(5)
× U	C. Root Maximum sum	xiQ-
26.	D. Root Minimum Sum	20.
20.		1M
	Answer: A. Root Mean Square	
	Explanation: RMS stands for Root Mean Square. This value of	
.0-	current is obtained by squaring all the current values, finding	
:(1)	the average and then finding the square root.	
C.C.	What is the effective value of current?	ci ⁽¹⁾
:.07	A. RMS current	:.05
	B. Average current	-07.
	C. Instantaneous current	
	D. Total current	
27.		
	Answer: A. RMS current	1M
	Explanation: RMS current is also known as the effective	
	current. RMS stands for Root Mean Square. This value of	
65	current is obtained by squaring all the current values, finding	.:.05
	the average and then finding the square root.	
		200
1		

COLL		
:(0)	::(0)	
	In a sinusoidal wave, average current is always rms	20,0
	current.	
	A. Greater than	
	B. Less than	
. 0	C. Equal to	
05	D. Not related	
28.		1M
.:.(5)	Answer: B. Less than	.:.(
	Explanation: The average value of current is the sum of all the	
W.	currents divided by the number of currents whereas RMS	
	current is obtained by squaring all the current values, finding	
	the average and then finding the square root. Hence RMS	
. 0	current is greater than average current.	
	For a rectangular wave, average current is rms current.	
	A. Greater than	
	B. Less than	(
	C. Equal to	
	D. Not related	
29.	Answer: C Equal to	1M
	Explanation: The rms value is always greater than the average	
. 0	except for a rectangular wave, in which the heating effect	
	remains constant so that the average and the rms values are	
	the same.	
	The Unit of Magnetic Flux is	
	The onit of Magnetic Plux is	
	A. Tesla	
	B. Weber	
	C. Weber - metre	
30.	D. None of the above	1M
.0)	Answer: - B. Weber	
	Explanation: The SI unit of magnetic flux is Weber (Wb) or	
::(03	tesla meter squared (Tm²) named after German physicist	
37	Wilhelm Weber.	20,7

:(03)	EMF Stands for	:,05
	A. Electromechanical force	27
I	3. Electromagnetic l force	
	C. Electromotive force	
31.	O. None of the above	
31.	Answer: - C. Electromotive force	1M
	Explanation: Electromotive force is defined as the electric	
5	potential produced by either an electrochemical cell or by	5
	changing the magnetic field. EMF is the commonly used	
0.0	acronym for electromotive force.	20
	2) Volt is equal to	
	A. Joule/Coulomb	
I	3. Ampere/Seconds	+.4
	C. Joule/Seconds	
I Co.	D. Coulomb/Seconds	.:.05
32.	Answer: - A. Joule/Coulomb	
	Explanation: One Volt is equal to 1 Joule/Coulomb. There are	1M
	many different definitions for the Volt, but the most common	
	is equal to 1 Joule/Coulomb. A volt is a unit of electromotive	
.0	force that measures the potential difference in electric	
	potential between two points. It is also known as a voltage	
5	measured in volts (V).	S
	B in B-H curve is known as	il.
~ 0	A. Reluctance	00-
	3. Magnetizing Force	
	C. Magnetic flux density	
	D. Magnetic Intensity	435
	Answer: -C. Magnetic flux density	1M
	Explanation: The B-H curve, also known as the magnetization	
.:(5)	curve or hysteresis curve, is a graphical representation that	
	describes the magnetic properties of a material. It shows the	
▼		▼

.:.09	relationship between the magnetic field strength (H) and the	.:.05
	magnetic flux density (B) of a material.	
900	The Unit of Magnetic Flux Density is	
	A. Tesla	
*_(B. Weber	
	C. Weber - metre	• • •
34.	D. None of the above	1M
: 0	Answer: - A. Tesla	*:05
201	Explanation: The tesla (symbolized T) is the standard unit	2011
	of magnetic flux density. It is equivalent to one weber per	
	meter squared (1 Wb/m²).	
	MMF stands for	
	A. Magnetic Memory field	
	B. Magnetic Material Force	
5	C. Magneto Motive Force	6
35.	D. None of the above	1M
0.00	Answer: - C. Magneto Motive Force	20.0
	Explanation: MMF is the abbreviation used	
	for Magnetomotive force	
. /	H in B-H curve is known as	
	A. Reluctance	
	B. Magnetizing Force C. Magnetic flux density	
36.	D. Magnetic Intensity	
30.		1M
	Answer: - B. Magnetizing force	
	Explanation: Magnetising force is represented by H, and has	
•.4	the unit A.m.	
	Hardward from the first transfer of the firs	
G C	Hysteresis in magnetic circuit is phenomenon of	cill
37.	A. Lagging of B behind H	1M
	B. Lagging of H behind B	20,5

	Setting up constant flux	.:.0
	D. None of the above	
100	Answer: - A. Lagging of B behind H	
	Explanation: The B-H curve or magnetisation curve is the	
	graph plotted between magnetic flux density (B) and	
.0	magnetising force (H). The meaning of hysteresis	
	is"lagging". Hysteresis is characterised as a lag of magnetic	
.:.(5)	flux density (B) behind the magnetic field strength (H).	(
	The SI Unit of Actual Permeability of free space is	
A	A. Henry	
E	B. Henry/Metre	
	Weber - metre	
	D. Farad/Metre	
38.	Answer: - B. Henry/Metre	1M
5	Explanation: It is a constant of proportionality that exists	
	between magnetic flux density and magnetic field intensity.	X
	The SI unit of permeability is Henry/meter.	
	Magnetic flux passes more readily through	
	. Wood	
	3. Air	
•. ()	I. Iron	(
39.	O. Vacuum	1M
	Answer: - C. Iron	
	Explanation: The magnetic field lines prefer to pass through	
	iron than because the permeability of iron is much larger.	
.0	MME in wagmatic circuit a superior and a to the electricate of the	
	MMF in magnetic circuit corresponds to in electric circuit	
	a. Potential Difference	
40.	B. EMF	1M
	Current	(0.
	D. Resistance	

collin		
.:(05)	Answer: -B. EMF	::03
	Explanation: The magneto motive force, mmf or f, is	
	analogous to the electromotive force i.e EMF and may be	
	considered the factor that sets up the flux.	
	The B-H curve ofwill not be a straight line	
· A.	Wood	
B.	Air	
C.	Soft Iron	(5)
D.	Copper	X/O-
41.	Answer: - C.Soft Iron	1M
	Explanation: Soft iron is a ferromagnetic material that is	, , , , , , , , , , , , , , , , , , ,
	commonly used in electromagnets and magnetic circuits due	
.0-	to its high magnetic permeability. Soft iron has a nonlinear B	
	- H curve due to its high saturation magnetization.	
. (5)	Direction of induced EMF can be found out from	.03
A.	Faradays law	
	Amperes law	~
	Fleming right hand Rule	
	Lenz's law	
.0	Answer: - C. Fleming right hand Rule	
42.	Explanation: Lenz's law suggests that the direction of induced	1M
C	emf opposes the change in magnetic flux. The negative sign in	C.C.
	Faraday's law can be related to this law. Lenz's law gives the	200
	direction of induced emf with respect to the change in	
	magnetic flux but Fleming's law gives the direction of induced	
	emf more accurately.	
÷0-	Which of the following material has least area of Hysteresis	
	loop	
	Wrought Iron	1M
	Hard Steel	NO N
C.	Soft Iron	

D. Silicon Steel	.:(0
Answer: -C. Soft Iron	37,
Explanation: Soft iron has the least hysteresis loop area	
because it has low coercivity and high permeability.	
Hysteresis loop area is a measure of the energy loss in a	
ferromagnetic material when it is repeatedly magnetized and	
demagnetized.	
If charge Q is 4 coulombs and time t is 1 seconds then current	
I is Co.	400
A. 1 Ampere	
B. 5 Ampere	
C. 3 Ampere	
D. 4 Ampere	1M
Answer: - D. 4 Ampere	
Explanation: $-1 = Q/t$	
	000
= 4/1 $= 4 A$	
If 3 joules work is done to charge a body to one coulomb Q	
then voltage V is	
A. 1 Volt	
B. 2 Volt	. (
C. 3 VOIL	1M
D. 4 Volt Answer: - C. 3 Volt	4.00
Allswert - C. 5 voit	
Explanation: - V = J/Q	
If current I is 7 amperes and time is 1 seconds then charge Q	
is	
C46. A 6 coulombs	
A. 6 coulombs B. 7 coulombs	1M
C. 8 coulombs	2000
G. O COMOTION	

CUII		
**(0)	D. 1 coulombs	*(0)
201	Answer: - B. 7 coulombs	201
	Explanation: - Q = I*t	
	The unit of frequency is	+ -
	A. Cycle	
5	B. Cycle-second	. (5)
	C. Hertz/second	a live
(100	D. Hertz	400
47.	Answer: - D. Hertz	
77.	Explanation: Scientist Heinrich Rudolf Hertz was a German	1M
	physicist who first conclusively proved the existence of the	
	waves which are electromagnetic and this was predicted by	
	James Clerk Maxwell's equations of electromagnetism. The	6
il O	unit that is of frequency is the cycle per second was named	× io
20.	"hertz" in his honour.	20.
	The frequency of an alternating current is	+ -
	A. The speed with which the alternator runs	
	B. The number of cycles generated in one minute	
6	C. The number of waves passing through a point in one second	6
ail C	D. The number of electrons passing through a point in one	NIV.
~~	second	20
48.	Answer: -C. The number of waves passing through a point in	
	one second	1M
	Explanation: The frequency of a wave is the number of waves	
	that pass a point in a certain period of time. Frequency can	
	also be described as the number of waves that pass a point in	c C
**(0)	one second.	*102
		201

The power factor of an AC circuit is equal to	*(Q2,
A. Cosine of the phase angle	S.L.
B. Sine of the phase angle	
C. Unity for a capacitive circuit	
D. Unity for a inductive circuit	1M
Answer: - A. Cosine of the phase angle	
Explanation: Power factor of an ac circuit is equal to the	
cosine of the angle between voltage and current.	ilos,
If two sinusoids of the same frequency but of different	20
amplitudes and phase angles are subtracted, the resultant is	
A. A sinusoid of the same frequency	
B. A sinusoid of half the original frequency	
C. A sinusoid of double the frequency	
D. Not a sinusoid	
Answer: - A. A sinusoid of the same frequency	1M
	37,
Evaluation, sinuspidal quantities with some frequency son	(),
Explanation: - sinusoidal quantities with same frequency can be added or subtracted & the resultant wave has same	
frequency.	
Form factor for a sine wave is	
A. 1.414.	.:.05
A. 1.414. B. 0.707	2
C. 1.11.	
5.1 D. 0.637	1M
Answer: - C. 1.11	
	. (5)
Explanation: - form factor=RMS Value/Average Value=1.11	
	▼

.:(09)	In an A.C. circuit power is dissipated in	.:.0
Mail	Maille	Warn
	A. Resistance only	
	B. Inductance only	
Fo A	C. Capacitance only	
52.	D. None of the above	1M
	Answer: - A. Resistance only	
a di Co	ajilos ajilos	dil
	Explanation: - Resistance in a circuit that has a voltage drops	
	across it and dissipates power	
	The voltage of domestic supply is 220 V. This value	
3	represents	
Sill	A. Mean value	
	B. R.M.S value	
Wa.	C. Peak value	1M
	D. Average value	
	Answer: - B. R.M.S value	
	Explanation: - The voltage of domestic ac is 220 V, it	
5	represents the root mean square voltage of supply.	
	The power consumed in a circuit element will be least when	
No	the phase difference between the current and voltage is	400
	A. 180°	
53.	B. 90°	
33.	C. 60°	1M
(5)	D.0°	wi C
War	Answer: - B. 90°	War

Explanation: The cosine of an angle is maximum when the angle is 0 and minimum when the angle is 90 degrees. Therefore, the power consumed by a circuit element will be least when the phase difference between the current and voltage is 90 degrees. The power consumed by 230 volt, 10 ampere and 0.8 power factor circuit is A. 2300 Watt B. 1840 Watt C. 230 Watt D. 1000 Watt Answer: - A. 2300Watt Explanation: P = V*1* Power factor Power factor of the following pure circuit will be zero A. Resistance B. Inductance C. Capacitance D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2 A. 6000 microtesla			
Therefore, the power consumed by a circuit element will be least when the phase difference between the current and voltage is 90 degrees. The power consumed by 230 volt, 10 ampere and 0.8 power factor circuit is A. 2300 Watt B. 1840 Watt C. 230 Watt D. 1000 Watt Answer: - A. 2300Watt Explanation: P = V*1* Power factor Power factor of the following pure circuit will be zero A. Resistance B. Inductance C. Capacitance D. Both (B) and (C) Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2	(5)	Explanation: The cosine of an angle is maximum when the	
least when the phase difference between the current and voltage is 90 degrees. The power consumed by 230 volt, 10 ampere and 0.8 power factor circuit is A. 2300 Watt B. 1840 Watt C. 230 Watt D. 1000 Watt Answer: - A. 2300Watt Explanation: P = V*1* Power factor Power factor of the following pure circuit will be zero A. Resistance B. Inductance C. Capacitance D. Both (B) and (C) Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2		angle is 0 and minimum when the angle is 90 degrees.	
voltage is 90 degrees. The power consumed by 230 volt, 10 ampere and 0.8 power factor circuit is A. 2300 Watt B. 1840 Watt C. 230 Watt D. 1000 Watt Answer: - A. 2300Watt Explanation: P = V*I* Power factor Power factor of the following pure circuit will be zero A. Resistance B. Inductance C. Capacitance D. Both (B) and (C) Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2		Therefore, the power consumed by a circuit element will be	
The power consumed by 230 volt, 10 ampere and 0.8 power factor circuit is A. 2300 Watt B. 1840 Watt C. 230 Watt D. 1000 Watt Answer: - A. 2300Watt Explanation: P = V*I* Power factor Power factor of the following pure circuit will be zero A. Resistance B. Inductance C. Capacitance D. Both (B) and (C) Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2		least when the phase difference between the current and	
factor circuit is A. 2300 Watt B. 1840 Watt C. 230 Watt D. 1000 Watt Answer: - A. 2300Watt Explanation: P = V*I* Power factor Power factor of the following pure circuit will be zero A. Resistance B. Inductance C. Capacitance D. Both (B) and (C) Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2		voltage is 90 degrees.	
A. 2300 Watt B. 1840 Watt C. 230 Watt D. 1000 Watt Answer: - A. 2300Watt Explanation: P = V*I* Power factor Power factor of the following pure circuit will be zero A. Resistance B. Inductance C. Capacitance D. Both (B) and (C) Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2	:0	The power consumed by 230 volt, 10 ampere and 0.8 power	
B. 1840 Watt C. 230 Watt D. 1000 Watt Answer: - A. 2300Watt Explanation: P = V*1* Power factor Power factor of the following pure circuit will be zero A. Resistance B. Inductance C. Capacitance D. Both (B) and (C) Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2		factor circuit is	
54. C. 230 Watt D. 1000 Watt Answer: - A. 2300Watt Explanation: P = V*I* Power factor Power factor of the following pure circuit will be zero A. Resistance B. Inductance C. Capacitance D. Both (B) and (C) Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2	A.	. 2300 Watt	::05
D. 1000 Watt Answer: - A. 2300Watt Explanation: P = V*I* Power factor Power factor of the following pure circuit will be zero A. Resistance B. Inductance C. Capacitance D. Both (B) and (C) Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2	V / 19	. 1840 Watt	
Answer: - A. 2300Watt Explanation: P = V*I* Power factor Power factor of the following pure circuit will be zero A. Resistance B. Inductance C. Capacitance D. Both (B) and (C) Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2	54. C.	. 230 Watt	1M
Explanation: P = V*I* Power factor Power factor of the following pure circuit will be zero A. Resistance B. Inductance C. Capacitance D. Both (B) and (C) Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2	D.	. 1000 Watt	
Power factor of the following pure circuit will be zero A. Resistance B. Inductance C. Capacitance D. Both (B) and (C) Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2		Answer: - A. 2300Watt	
A. Resistance B. Inductance C. Capacitance D. Both (B) and (C) Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2		Explanation: P = V*I* Power factor	
B. Inductance C. Capacitance D. Both (B) and (C) Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2		Power factor of the following pure circuit will be zero	
B. Inductance C. Capacitance D. Both (B) and (C) Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2	4		:05
C. Capacitance D. Both (B) and (C) Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power equals zero, because true power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2			
D. Both (B) and (C) Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power factor is zero, because true power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2	C.		
Answer: - D. Both (B) and (C) Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power factor is zero, because true power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2	D		
Explanation: For the purely inductive circuit, the power factor is zero, because true power equals zero. For the purely inductive circuit, the power factor is zero, because true power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2			
factor is zero, because true power equals zero. For the purely inductive circuit, the power factor is zero, because true power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2	33.		1M
inductive circuit, the power factor is zero, because true power equals zero. The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2			
The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2	5		(5)
The magnetic flux density in a magnetic field in which flux is 600 Microweber and area is 0.1 m2	XIV"		110
600 Microweber and area is 0.1 m2	20.	equais zero.	0.
600 Microweber and area is 0.1 m2			
		The magnetic flux density in a magnetic field in which flux is	
A. 6000 microtesla		600 Microweber and area is 0.1 m2	
	A.	. 6000 microtesla	
56. B. 600 microtesla 1M	E		1M
C. 6 tesla	.:.65		
D. 0.6 tesla		n n 6 tosla	
D. O.O tesia		D. U.U tesia	

3100	Answer: - A. 6000microtesla	::05
201	Explanation= flux/Area	S. C.
	Can we apply Kirchhoff's law to magnetic circuits?	
. 0.	A. Yes	
	B. No	
Silli	C. Depends on the circuit	SU
ai Co	D. Insufficient information provided	×103
0.00	Answer: A. Yes	20.0
57.		1M
	Explanation: Magnetic circuits have an equivalent to the	
.0	potential difference of electric circuits. This is the magnetic	
	potential difference which allows us to apply Kirchhoff's laws	
5	to magnetic circuit analysis.	S
a i C		
(1,0,	WhichoffollowingisPhasorrepresentationof3phasevoltages?	W.
	Va Cualag Vu	
	18- 100 on mt	by 120°)
3	y = 7m5in (ust -120)	> VR) Reference
	Vo = Vm sin (wt-240)	Marin non car ou
. (5)	= Ymosin (wt+120)	(120*)
58.	(A) (B)	
58.	(D)	
	Ve= Vm sin We = Vm Loc Noneon	fthese
	(C) $y = V_m \sin(\omega t - 2\pi y_3) = V_m L - 2\pi y_3^2$	
Sill	NB = Nm 310 (ωt + 21/3) = Nm L 21/3	
.:.05	Answer:-OptionB	.:.05
aji cs.		27
	1M	

Which of following is advantage on 3 Phase AC over 1 Phase	.:.05
AC System?	2
A. More output power	
B. Less space required to produce same power	
C. Self-starting of machine is possible	
D. All of them	
	. (5)
Answer: - D. All of them	
Explanation: - To transmit a specific <u>power</u> over a specific	400
distance at a given rated <u>voltage</u> , a three phase system needs	
59. less conductor material as compared to the single phase	1M
system.	
The size of a three phase system operated machine is less	
than the machine operated at single phase voltage having the	6
same output rating.	NIO.
In a three phase power supply system, the less voltage drop	200
occurs from source to the load points,	
A three phase supply produces uniform rotating magnetic	
field therefore three phase motors are simpler in	
construction, small in size and can be started automatically	
with smooth operation.	S
Identifythecorrectphasesequence?	
month, morphisms of plants.	20.
$+V_L$ A B C A B	
60. 90° \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	1M
V. + + + + + + + + + + + + + + + + + + +	
(A) B-C-A (B)A-B-C	.: C
(C)C-A-B (D)Noneofabove	37.

on	Answer:-B. A-B-C :- PhaseSequenceisasequenceinwhich3phasevoltagesreachtheirmaximumposit ivevalues	Majilos
61.	Identify thetype of three phase connection?	Maileshi
	A. ThreePhaseThreeWireStarConnectedSystem 3. ThreePhaseFourWireStarConnectedSystem C. ThreePhaseThreeWireDeltaConnectedSystem D. Noneofabove Answer:-A. ThreePhaseThreeWireStarConnectedSystem	1M
62.	Identifythetypeofthreephaseconnection?	1M
	A. ThreePhaseThreeWireStarConnectedSystem 3. ThreePhaseFourWireStarConnectedSystem 4. ThreePhaseThreeWireDeltaConnectedSystem 5. ssNoneofabove Answer:-B. ThreePhaseFourWireStarConnectedSystem	Mailoshi

:,(53)	AlltherulesandlawsofD.C.circuitalsoapplytoA.C.circuitcontaining	::03
	A. Capacitanceonly	37,
	B. Inductanceonly	
(2)	C. Resistanceonly	
63	D. All above	1M
	Answer:-C. Resistance only	
	Explanation:-	
.:.05	Resistanceisnotchargeorenergystoringelementofelectricalcircuit.	.:.05
	Capacitivereactanceismorewhen	200
	A. Capacitanceandfrequencyofsupplyisless	
	B. CapacitanceislessandfrequencyofsupplyismoreC. Capacitance is more and frequency of supply is less	
• ?	D. Capacitance and frequency of supply is less	
64	Answer:-A. Capacitanceandfrequencyofsupplyisless	1M
(5)	:65	5
3		2
	$X_{C} = \frac{1}{2\pi fC}$	
	2101	
	Pureinductivecircuit	
	A. Consumessomepoweronaverage P. Doognottakonowaratallfromalina	
65	B. Doesnottakepoweratallfromaline C. Storeenergyinmagneticfieldandagainreturntosource	
	D. Noneoftheabove	1M
	Answer:-C. Storeenergyinmagneticfieldandagainreturntosource	
	Explanation:-Nopowerisconsumedinthecircuit.	
	Powerfactorofthefollowingpurecircuitwillbezero	
1	1 owertactorormeronowingpureen cultwinibezero	
	A. Resistance	
500	B. Inductance	1M S
	C. Capacitance	
400	D. Both(B)and(C)	
*		*

Cillin			
x\C3	Answer:-D. Both B and C	;;(C ³	*:03
	Explanation:-Power=V*I*cosΦ=V*I*cos(90))=0	3.0
	InfollowingfigureArepresents		
	B		
	A) Timeperiod A _{jmax} = A _{jmax} × 0.707 A _{jmax} = A _{jmax} × 0.636 A _{jmax} = A _{jmax} × 0.707 A _{jma}	(B) Amplitude	1M
	(C)Cycle	(D)	Tivi
		InstantaneousValue	
	Answer:-A. Time period		
	Explanation:- The period of a wave is	the amount of time it takes	
Collin	for a wave to complete one cycle.	, the amount of time it takes	
× C3		,;C ⁵	
Way.	InfollowingfigurePhasedifferenceis		Warr
67	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\theta = \omega t$	1M
67	(A)45º	(B)90°	1M
	(C)30º	(D)0º	CALL.
	Answer:-B. 90º		
Maiicshinia		Malicshinia	Raileshi

Followingfigurerepresentswhichty	peofACCircuit	.:.O
	Maille	
V = V _m sinωt (A) PureResistive (C)PureInductive	(B)Purecapacitor	M S
(C)PureInductive	(D)noneofthese	
Answer:-A. PureResistive		
Explanation:-In a purely resi	istive circuit, all circuit power is	
dissipated by the resistor(s)). Voltage and current are in phase	
with each other.		
231 V 400 V	(4+j6) (8+j6)	dilosin
Identifytypeofload (A) UnbalancedStarLoad (B) UnbalancedDeltaLoad (C)BalancedStarLoad d Answer:-A. UnbalancedStarLoad	(D)BalancedDeltaLoa	Mileshi
Explanation:-Allimpedancesarenote	equal	aileshi

cull			- Gr
Mailos	Identifytypeofload	Majilos	Majilos
71	(A) UnbalancedStarLoad (B) UnbalancedDeltaLoad (C)BalancedStarLoad	Mailcshinia	1M
Mailcshin	d Answer:-C. BalancedStarLoad Explanation:-Allimpedancesareequal	(D)BalancedDeltaLoa	Mailesti
78	InbalancedstarorDeltaconnectedloadallphas ewillbe (A) Unequal (B) Dependsontypeofload (C) Equal Answer:-C. Equal Explanation:-Allimpedancesareequalsoallval	(D)Noneofabove	1M
579	InUnbalancedstarorDeltaconnectedloadallpl tagewillbe (A) Unequal (B) Dependsontypeofload (C) Equal	(D)Noneofabove	1M

::(0)	Answer:-A. Unequal	:,05
	Explanation:-Allimpedancesareunequalsoallvalueswillbeunequal	20,
		0,
	Find the equivalent delta circuit.	
Mailcshinis	4.53 ohm 1.23 ohm 6.66 ohm	Maileshi
	A. 9.69 ohm, 35.71 ohm, 6.59 ohm	
80	B. 10.69 ohm, 35.71 ohm, 6.59 ohm	1M
	C. 9.69 ohm, 34.71 ohm, 6.59 ohm	IM
ailes.	D. 10.69 ohm, 35.71 ohm, 7.59 ohm	ilos.
W.o.	Answer: A. 9.69 ohm, 35.71 ohm, 6.59 ohm	W.o.
	Explanation: Using the star to delta conversion:	
. 0	$R_1 = 4.53 + 6.66 + 4.53 * 6.66 / 1.23 = 35.71$ ohm	
.05	$R_2 = 4.53 + 1.23 + 4.53 * 1.23 / 6.66 = 6.59 \text{ ohm}$	• • •
C)	$R_3 = 1.23 + 6.66 + 1.23 * 6.66 / 4.53 = 9.69$ ohm.	c/l
	ilos ilos	×10°
00.	Find the equivalent resistance between X and Y.	
	x 2 ohm	
81	2 ohm/2	1M
	10 ohm 10 ohm	
ai Co	Y is significant to the signific	
War	A. 3.33 ohm	1000
▼		▼

CUII		
;;(0)	B. 4.34 ohm	.:(0
	C. 5.65 ohm	20,7
	D. 2.38 ohm	
	Answer: D. 2.38 ohm	
	Explanation: The 3 2ohm resistors are connected in star,	
	changing them to delta, we have R1=R2=R3=2+2+2*2/2=6	
	ohm.	.:(0
	The 3 60hm resistors are connected in parallel to the 10 ohm	97
	5 ohm and 10ohm resistors respectively.	
Ť	This network can be further reduced to a network consisting	
	of a 3.75ohm and 2.73ohm resistor connected in series	
.0.	whose resultant is intern connected in parallel to the 3.75	
Sill	ohm resistor.	
	Delta connection is also known as	
	A. Y-connection	
	B. Mesh connection	
	C. Either Y-connection or mesh connection	
	D. Neither Y-connection nor mesh connection	
82	Answer: B. Mesh connection	1M
	Explanation: Delta connection is also known as mesh	
000	connection because its structure is like a mesh, that is, a	
	closed loop which is planar.	
	crosed roop which is planar.	
:10-	Ra is resistance at A, Rb is resistance at B, Rc is resistance at C	
	in star connection. After transforming to delta, what is	
	resistance between B and C?	4
83	A. Rc+Rb+Rc*Rb/Ra	1M
	B. Rc+Rb+Ra*Rb/Rc	1000

C. Ra+Rb+Ra*Rc/Rb D. Rc+Rb+Rc*Ra/Rb Answer: A. Rc+Rb+Rc*Rb/Ra Explanation: After converting to the delta, each delta connected resistance is equal to the sum of the two resistances it is connected to+product of the two resistances divided by the remaining resistance. Hence, resistance between 8 and C = Rc+Rb+Rc*Rb/Ra. Find the equivalent resistance between A and B. Find the equivalent resistance between A and B. 10 ohm A. 32ohm B. 31ohm C. 30ohm D. 29ohm Answer: D. 29ohm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is Re (10×10+10×11+11×10)/11=29ohm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage = phase voltage D. line voltage > phase voltage			
Explanation: After converting to the delta, each delta connected resistance is equal to the sum of the two resistances it is connected to+product of the two resistances divided by the remaining resistance. Hence, resistance between B and C = Rc+Rb+Rc*Rb/Ra. Find the equivalent resistance between A and B. Find the equivalent resistance between A and B. A. 32ohm B. 31ohm C. 30ohm D. 29ohm Answer: D. 29ohm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=29ohm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage		C. Ra+Rb+Ra*Rc/Rb	
Explanation: After converting to the delta, each delta connected resistance is equal to the sum of the two resistances it is connected to+product of the two resistances divided by the remaining resistance. Hence, resistance between B and C = Rc+Rb+Rc*Rb/Ra. Find the equivalent resistance between A and B. Find the equivalent resistance between A and B. A. 32ohm B. 31ohm C. 30ohm D. 29ohm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=29ohm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage		D. Rc+Rb+Rc*Ra/Rb	
Explanation: After converting to the delta, each delta connected resistance is equal to the sum of the two resistances it is connected to+product of the two resistances divided by the remaining resistance. Hence, resistance between B and C = Rc+Rb+Rc*Rb/Ra. Find the equivalent resistance between A and B. Find the equivalent resistance between A and B. A. 32ohm B. 31ohm C. 30ohm D. 29ohm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=29ohm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage	9		900
connected resistance is equal to the sum of the two resistances it is connected to+product of the two resistances divided by the remaining resistance. Hence, resistance between B and C = Rc+Rb+Rc*Rb/Ra. Find the equivalent resistance between A and B. If ohm 10 ohm A . 32ohm B . 31ohm C . 30ohm D . 29ohm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=29ohm. In a delta-connected load, the relation between line voltage and the phase voltage 85 B. line voltage > phase voltage 85 B. line voltage < phase voltage C. line voltage = phase voltage		Answer: A. Rc+Rb+Rc*Rb/Ra	
connected resistance is equal to the sum of the two resistances it is connected to+product of the two resistances divided by the remaining resistance. Hence, resistance between B and C = Rc+Rb+Rc+Rb/Ra. Find the equivalent resistance between A and B. I ohm A 320hm B 310hm C. 30ohm D. 290hm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=290hm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage			
resistances it is connected to+product of the two resistances divided by the remaining resistance. Hence, resistance between B and C = Rc+Rb+Rc*Rb/Ra. Find the equivalent resistance between A and B. Find the equivalent resistance between A and B. A. 32ohm B. 31ohm C. 30ohm D. 29ohm Answer: D. 29ohm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=29ohm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage			
divided by the remaining resistance. Hence, resistance between B and C = Rc+Rb+Rc*Rb/Ra. Find the equivalent resistance between A and B. 10 ohm A			
Find the equivalent resistance between A and B. Find the equivalent resistance between A and B. It ohm A . 320hm B . 310hm C . 300hm D . 290hm Answer: D. 290hm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=290hm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage	. (5)		. (5)
Find the equivalent resistance between A and B. 10 ohm A			
A. 320hm B. 310hm C. 300hm D. 290hm Answer: D. 290hm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=290hm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage	V.0.	between B and C = Rc+Rb+Rc*Rb/Ra.	.C.O.
A. 320hm B. 310hm C. 300hm D. 290hm Answer: D. 290hm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=290hm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage			
A. 320hm B. 310hm C. 300hm D. 290hm Answer: D. 290hm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=290hm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage		Find the equivalent resistance between A and B.	
A. 320hm B. 310hm C. 300hm D. 290hm Answer: D. 290hm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=290hm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage			
A. 32ohm B. 31ohm C. 30ohm D. 29ohm Answer: D. 29ohm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=29ohm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage		> 1/0	
A. 32ohm B. 31ohm C. 30ohm D. 29ohm Answer: D. 29ohm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=29ohm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage		< 11 ohm	
A. 32ohm B. 31ohm C. 30ohm D. 29ohm Answer: D. 29ohm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=29ohm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage	. , 5	10 mm (\$)	. (5)
B. 310hm C. 300hm D. 290hm Answer: D. 290hm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=290hm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage		10 0nm 10 0nm	
B. 310hm C. 300hm D. 290hm Answer: D. 290hm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=290hm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage	.0.	V V V V V V V V V V V V V V V V V V V	·V.0.
Answer: D. 29ohm Answer: D. 29ohm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=29ohm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage			
Answer: D. 29ohm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=29ohm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage	04		1 1 1
Answer: D. 290hm Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=290hm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage	04		TIVI
Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=29ohm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage		D. 29ohm	
Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=29ohm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage			
Explanation: The equivalent resistance between node 1 and node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=29ohm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage	. , 5	Answer: D. 290hm	. (5)
node 3 in the star connected circuit is R= (10×10+10×11+11×10)/11=29ohm. In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage			
In a delta-connected load, the relation between line voltage and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage	.0.		·V.0.
and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage			
and the phase voltage is? A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage		In a dolta-connected load, the relation between line voltage	
A. line voltage > phase voltage B. line voltage < phase voltage C. line voltage = phase voltage	. 0.		
B. line voltage < phase voltage C. line voltage = phase voltage	0		• •
C. line voltage = phase voltage	COF		1M
	565		TIVI
D. The voltage >= phase voltage			
		ט. mie voitage >= pnase voitage	
	•		•

GOIII.		
Majics	Answer: C. line voltage = phase voltage	Mail
	Explanation: In a delta-connected load, the relation between	
	line voltage and the phase voltage is line voltage = phase	
chinis	voltage	
A.	A polyphase system is generated by? Having two or more generator windings separated by equal	Mail
	electrical angle.	
B.	Having generator windings at equal distances	
. (2 c .	None of the above	
D.	A and C	
S	Answer: Having two or more generator windings separated	
86	by equal electrical angle.	1M
200	Explanation: A generator having two or more electrical	
	windings which are separated by equal electrical angle	
	generates a polyphase electrical system. The electrical angle	
. 0	or displacement depends upon the number of windings or	
	phases. For example, in a three-phase electrical system, the	
	generated voltages are separated from each other by	
::(05)	120° degrees.	.:(
	In a three phase AC circuit, the sum of all three generated	30,0
	voltages is?	
A.	Infinite (∞)	
	Zero (0)	
07	One (1)	1M
	None of the above	
	Answer: B. Zero (0)	
	Explanation: Three phase voltages are generated by having	2011

. (5)	an alternator with three armature windings such that each	•. (
	winding is displaced from the other by 120 degrees. When	
.00	these windings are placed in a rotating magnetic field or	000
	rotated in a stationary magnetic field, electromotive force is	
	generated in each coil, of same magnitude and direction.	
. 0.	For a star connected three phase AC circuit ———	
A.	Phase voltage is equal to line voltage and phase current is	
.:.05	three times the line current	.:.0
B.	Phase voltage is square root three times line voltage and	
	phase current is equal to line current	
C.	Phase voltage is equal to line voltage and line current is equal	
	to phase current	
· (D.	None of the above	
88	Answer: B. Phase voltage is square root three times line	1M
chi	voltage and phase current is equal to line current	
× 03	voltage and phase current is equal to fine current	,;(
201		20,0
	Explanation: A star connected AC circuit is achieved by	
	connecting each end of the winding to a common point known	
	as neutral point and leaving the other end of each winding	
.0.	free. While voltage across each coil is the phase voltage,	
.(0)	potential difference between each free end is the line voltage.	
S	What is the type of current obtained by finding the square of	
×.0	the currents and then finding their average and then fining	* (
0.0	the square root?	
	A. RMS current	
	B. Average current	
89	C. Instantaneous current	1M
89	D. Total current	11/1
	Answer: A. RMS current	
6	Explanation: RMS stands for Root Mean Square. This value of	
XIV	current is obtained by squaring all the current values, finding	X
	the average and then finding the square root.	20.0

Find the total current in the circuit if two currents of 4+5j flow in the circuit. A. 4+5j A B. 4A C. 5A D. 8+10j A Answer: D. 8+10j A Explanation: The total current in the circuit is the sum of the two currents where we add the real parts and imaginary parts separately. Therefore, I total= 8+10j A. What is the correct expression of ω? A. ω=2π B. ω=2πf C. ω=πf D.ω=2t² 91 Answer: B. ω=2πf Explanation: The correct expression for ω is ω=2πf where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is ω=2πf. Substituting the value of f from the question, we get ω=31.4 rad/s.			
A. $4+5j$ A B. $4A$ C. $5A$ D. $8+10j$ A Answer: D. $8+10j$ A Answer: D. $8+10j$ A Answer: D. $8+10j$ A IM Explanation: The total current in the circuit is the sum of the two currents where we add the real parts and imaginary parts separately. Therefore, I total= $8+10j$ A. What is the correct expression of ω ? A. ω = 2π B. ω = $2\pi f$ C. ω = πf D. ω = $2f$? 91 Answer: B. ω = $2\pi f$ Explanation: The correct expression for ω is ω = $2\pi f$ where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is $5Hz$? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Explanation: The expression for ω is ω = $2*\pi$ f. Substituting the value of f from the question, we get ω = 31.4	. 69	Find the total current in the circuit if two currents of 4+5j	•.0
B. 4A C. 5A D. 8+10j A Answer: D. 8+10j A IM Explanation: The total current in the circuit is the sum of the two currents where we add the real parts and imaginary parts separately. Therefore, I total= 8+10j A. What is the correct expression of ω? A. ω=2π B. ω=2πf C- ω=πf D.ω=2f² 91 IM Answer: B. ω=2πf Explanation: The correct expression for ω is ω=2πf where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is ω=2*π*f. Substituting the value of f from the question, we get ω=31.4		flow in the circuit.	
C. 5A D. 8+10j A Answer: D. 8+10j A Explanation: The total current in the circuit is the sum of the two currents where we add the real parts and imaginary parts separately. Therefore, I total= 8+10j A. What is the correct expression of ω? A. ω=2π B. ω=2πf C. ω=πf D.ω=2f² 91 Answer: B. ω=2πf Explanation: The correct expression for ω is ω=2πf where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is ω=2*π*f. Substituting the value of f from the question, we get ω=31.4	100	A. 4+5j A	000
D. 8+10j A Answer: D. 8+10j A Explanation: The total current in the circuit is the sum of the two currents where we add the real parts and imaginary parts separately. Therefore, I total= 8+10j A. What is the correct expression of ω? A. ω=2π B. ω=2πf C. ω=πf D.ω=2f² 91 Answer: B. ω=2πf Explanation: The correct expression for ω is ω=2πf where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is ω=2*π*f. Substituting the value of f from the question, we get ω=31.4		B. 4A	
Answer: D. 8+10j A Explanation: The total current in the circuit is the sum of the two currents where we add the real parts and imaginary parts separately. Therefore, I total= 8+10j A. What is the correct expression of ω? A. ω=2π B. ω=2πf C. ω=πf D.ω=2f² 91 Answer: B. ω=2πf Explanation: The correct expression for ω is ω=2πf where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is ω=2*π*f. Substituting the value of f from the question, we get ω=31.4		C. 5A	
Explanation: The total current in the circuit is the sum of the two currents where we add the real parts and imaginary parts separately. Therefore, I total= 8+10j A. What is the correct expression of ω? A. ω=2π B. ω=2πf C. ω=πf D.ω=2f² 91 Explanation: The correct expression for ω is ω=2πf where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s P. 341 rad/s Explanation: The expression for ω is ω=2*π*f. Substituting the value of f from the question, we get ω=31.4	. 0	D. 8+10j A	
Explanation: The total current in the circuit is the sum of the two currents where we add the real parts and imaginary parts separately. Therefore, I total= 8+10j A. What is the correct expression of ω? A. ω=2π B. ω=2πf C. ω=πf D.ω=2f² 91 Answer: B. ω=2πf Explanation: The correct expression for ω is ω=2πf where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is ω=2*π*f. Substituting the value of f from the question, we get ω=31.4		Answer: D. 8+10j A	110
two currents where we add the real parts and imaginary parts separately. Therefore, I total= 8+10j A. What is the correct expression of ω ? A. ω =2 π B. ω =2 π f C. ω = π f D. ω =2f2 91 Answer: B. ω =2 π f Explanation: The correct expression for ω is ω =2 π f where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s D. 341 rad/s Explanation: The expression for ω is ω =2 π *f. Substituting the value of f from the question, we get ω =31.4	90		IM
parts separately. Therefore, I total= 8+10j A. What is the correct expression of ω ? A. ω =2 π B. ω =2 π f C. ω = π f D. ω =2 \mathbb{F}^2 91 Answer: B. ω =2 π f Explanation: The correct expression for ω is ω =2 π f where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is ω =2* π *f. Substituting the value of f from the question, we get ω =31.4	X	- × × × × × × × × × × × × × × × × × × ×	,;(
Therefore, I total= 8+10j A. What is the correct expression of ω ? A. ω =2 π B. ω =2 π f C. ω = π f D. ω =2 f 2 91 Answer: B. ω =2 π f Explanation: The correct expression for ω is ω =2 π f where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is ω =2 π *f. Substituting the value of f from the question, we get ω =31.4	~0		0,000
What is the correct expression of ω ? A. $\omega = 2\pi$ B. $\omega = 2\pi f$ C. $\omega = \pi f$ D. $\omega = 2f^2$ 91 Answer: B. $\omega = 2\pi f$ Explanation: The correct expression for ω is $\omega = 2\pi f$ where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is $5Hz$? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is $\omega = 2*\pi*f$. Substituting the value of f from the question, we get $\omega = 31.4$			
A. $\omega=2\pi$ B. $\omega=2\pi f$ C. $\omega=\pi f$ D. $\omega=2f^2$ 91 Answer: B. $\omega=2\pi f$ Explanation: The correct expression for ω is $\omega=2\pi f$ where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is $\omega=2*\pi*f$. Substituting the value of f from the question, we get $\omega=31.4$		Therefore, I total= 8+10j A.	
A. $\omega=2\pi$ B. $\omega=2\pi f$ C. $\omega=\pi f$ D. $\omega=2f^2$ 91 Answer: B. $\omega=2\pi f$ Explanation: The correct expression for ω is $\omega=2\pi f$ where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is $\omega=2*\pi*f$. Substituting the value of f from the question, we get $\omega=31.4$			
B. $\omega=2\pi f$ C. $\omega=\pi f$ D. $\omega=2f^2$ 91 Answer: B. $\omega=2\pi f$ Explanation: The correct expression for ω is $\omega=2\pi f$ where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is $5Hz^2$ A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is $\omega=2*\pi*f$. Substituting the value of f from the question, we get $\omega=31.4$		What is the correct expression of ω ?	
C. $\omega=\pi f$ D. $\omega=2f^2$ 91 Answer: B. $\omega=2\pi f$ Explanation: The correct expression for ω is $\omega=2\pi f$ where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s P2 Answer: B. 31.4 rad/s Explanation: The expression for ω is $\omega=2^*\pi^*f$. Substituting the value of f from the question, we get $\omega=31.4$		A. $\omega=2\pi$	
$D.\omega=2f^2$ 91 Answer: B. $\omega=2\pi f$ Explanation: The correct expression for ω is $\omega=2\pi f$ where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is $\omega=2*\pi*f$. Substituting the value of f from the question, we get $\omega=31.4$	5	Β. ω=2πf	
91 Answer: B. ω =2 π f Explanation: The correct expression for ω is ω =2 π f where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is ω =2* π *f. Substituting the value of f from the question, we get ω =31.4		$C. \omega = \pi f$	
Answer: B. ω =2 π f Explanation: The correct expression for ω is ω =2 π f where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is ω =2* π *f. Substituting the value of f from the question, we get ω =31.4	.0.	$D.\omega=2f^2$	200
Answer: B. ω =2 π f Explanation: The correct expression for ω is ω =2 π f where f is the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is ω =2* π *f. Substituting the value of f from the question, we get ω =31.4	91		1M
the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is ω =2* π *f. Substituting the value of f from the question, we get ω =31.4		Answer: B. ω=2πf	
the angular frequency of the alternating voltage or current. Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is ω =2* π *f. Substituting the value of f from the question, we get ω =31.4	.0	.0	
Find the value of ω if the frequency is 5Hz? A. 3.14 rad/s B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is ω =2* π *f. Substituting the value of f from the question, we get ω =31.4		Explanation: The correct expression for ω is $\omega = 2\pi f$ where f is	
A. $3.14 rad/s$ B. $31.4 rad/s$ C. $34 rad/s$ D. $341 rad/s$ Answer: B. $31.4 rad/s$ Explanation: The expression for ω is $\omega = 2*\pi*f$. Substituting the value of f from the question, we get $\omega = 31.4$	6	the angular frequency of the alternating voltage or current.	
B. 31.4 rad/s C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is $\omega=2^*\pi^*f$. Substituting the value of f from the question, we get $\omega=31.4$	× O	Find the value of ω if the frequency is 5Hz?	X
C. 34 rad/s D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is $\omega=2*\pi*f$. Substituting the value of f from the question, we get $\omega=31.4$	200	A. 3.14 rad/s	10°
D. 341 rad/s Answer: B. 31.4 rad/s Explanation: The expression for ω is ω =2* π *f. Substituting the value of f from the question, we get ω =31.4		B. 31.4 rad/s	
Answer: B. 31.4 rad/s Explanation: The expression for ω is $\omega=2*\pi*f$. Substituting the value of f from the question, we get $\omega=31.4$		C. 34 rad/s	
Answer: B. 31.4 rad/s Explanation: The expression for ω is $\omega=2*\pi*f$. Substituting the value of f from the question, we get $\omega=31.4$		D. 341 rad/s	
Substituting the value of f from the question, we get ω =31.4	92	Answer: B. 31.4 rad/s	1M
• (1)		Explanation: The expression for ω is $\omega=2^*\pi^*f$.	
rad/s.	. 5	Substituting the value of f from the question, we get ω =31.4	
		rad/s.	
	(1°C)		(C)
			*

collin		
.:(0)	::(0)	.:.(
	When one sine wave passes through the zero following the	3
	other, it is	
	A. Leading	
	B. Lagging	
. 0.	C. Neither leading nor lagging	
	D. Either leading or lagging	
03		1M
::(05)3	Answer: B. Lagging	101
	Explanation: The sine wave is said to lag because it passes	
	though zero following the other, hence it crosses zero after	
	the first wave, therefore it is said to lag.	
	the most wave, therefore it is said to lag.	
.0.	.0	
.(1)	The time axis of an AC phasor represents?	
COLL	A. Time	
::(05)	B. Phase angle	(0
	C. Voltage	37.
	D. Current	
94	Answer: B. Phase angle	1M
	Explanation: The time axis while measuring an AC sinusoidal	
.0-	voltage or current represents the phase angle when	
	converting it to a phasor.	
C)		
	The length of the phasor represents?	
	A. Magnitude of the quantity	0,7,
	B. Direction of the quantity	
	C. Neither magnitude nor direction	
	D. Either magnitude or direction	
95	Answer: A. Magnitude of the quantity	1M
	Explanation: The length of the phasor arrow represents the	
6	magnitude of the quantity, whereas the angle between the	
× C	phasor and the reference represents the phase angle.	×10
10°		

	::(0)	::05
	The average power supplied to an inductor over one	
	complete alternating current cycle is:	
	. 0	
B.	IV ²	
C.	I ²	•.<
D.	· IR ²	
96	::(05)	::05
96	Answer: A.0	1M
	Explanation: For a pure inductor circuit, $\phi = 90^{\circ}$ (: current	
	lags the voltage by 90° in the pure inductive circuit)	
.0-	$\cos \phi = \cos 90^\circ = 0$	
	$P = V_{rms}I_{rms} 0$	
S	r – v _{rms1rms} u	GIV.
3100	P = 0 W	,:(0)
0.	Ohm's law for magnetic circuits is	20.0
	Α. F=φS	
	B. F=φ/S	
	C. $F = \varphi^2 S$	
.0.	D. $F=\phi/S^2$	
97	Answer: A. F=φS	1M
	cs'	
	Explanation: Ohm's law for magnetic circuits states that the	
	MMF is directly proportional to the magnetic flux where	
	reluctance is the constant of proportionality.	
	What happens to the MMF when the magnetic flux decreases?	
	A. Increases	
98	B. Decreases	1M
	C. Remains constant	
	D. Becomes zero	
W.	We We	Mo

-cn		
XIC S	ilos ilos	
	Answer: B. Decreases	
	Explanation: Ohm's law for the magnetic circuit's states that	
	the MMF is directly proportional to the magnetic flux hence as	
	the magnetic flux decreases, the MMF also decreases.	
	Calculate the MMF when the magnetic flux is 5Wb and the	
.:.05	reluctance is 3A/Wb.	(
	A. 10At	
	B. 10N	
	C. 15N	
	D. 15At	
99	Answer: D. 15At	1M
5	cs)	
	Explanation: We know that:	
0.0	F=φS	00
	Substituting the given values from the question, we get MMF	
	= 15At.	
	A ring having a cross-sectional area of 500 mm ² , a	
	circumference of 400 mm and φ=800microWb has a coil of	
	200 turns wound around it. Calculate the flux density of the	
	ring.	
100	A. 1.6T	000
	B. 2.6T	18/
	C. 3.6T	1M
100	D. 4.6T	
	Answer: A. 1.6T	
6	Explanation: φ=BA => Flux density B = φ/A	
N/O	Substituting the values, we get B=1.6T.	X
0°		

Mailcelin Thank You in the state of the s Mailcsin Mailcshinia Mailcshinia Mailcshinia Malicshir Mailcshinia Mailcshinia Mailcshinia Mailcshir Mailcshinia Mailcshinia Mailcshinia Malicshi Malicshinia Maiicshinia Mailcshinia Mailcshir

Silos	Majics	Majir
Unit II	Electrical Machines	
S. N.		Marks
	What is Transformer? a) Transformer is a device used to convert low alternating voltage to a high alternating voltage b) Transformer is a device used to convert alternating current to direct current c) Transformer is a device used to convert low alternating current to a high alternating current d) Transformers are used only for low alternating voltage Answer: a. Transformer is a device used to convert low alternating voltage	1M
	Explanation: A Transformer is a device used to convert low alternating voltage to a high alternating voltage and vice versa. Transformers are based on the phenomena of mutual induction. A transformer consists of a soft iron coil with two coils wound around it which are not connected to one another. What is the function of a transformer? a) Transformer is used to step down or up the AC voltages and	1M

Mailcshinia

Maiicshi

Mailcshinia

Mailcshinia

::(0)	currents	::05
	b) Transformer is used to step down or up the DC voltages and	37
	currents	
	c) Transformer converts DC to AC voltages	
	d) Transformer converts AC to DC voltages	
	Answer: a. Transformer is used to step down or up the AC	
6	voltages and currents	6
XIO 3	Explanation: A Transformer does not work on DC and operates	xiQ ³
	only on AC, therefore it Step up or Step down the level of AC	200
	Voltage or Current, by keeping frequency of the supply	
	unaltered on the secondary side.	
	What is the working principle of a Transformer?	
	a) Transformer works on the principle of self-induction	
	b) Transformer works on the principle of mutual induction	
-5	c) Transformer works on the principle of ampere law	. (5)
	d) Transformer works on the principle of coulomb law	
V.0.		0.0
3	Answer: bTransformer works on the principle of mutual	1M
	induction	
. 0	Explanation: A transformer is an electrical device used to vary	
	the input voltage. Transformer works on the principle of mutual	
	induction.	
	Transformer ratings are given in	::(0)
	a) kVA	37,
	b) HP	
·	c) kVAR	
	d) kW	
4 . 2		1M
	Answer: a. kVA	
		6
×	Explanation: There are two types of losses in a transformer,	× V
	Copper Losses and Iron Losses or Core Losses or Insulation	3.

Losses. Copper losses (I ² R) depends on current pass transformer winding while Iron losses or Core Losse Insulation Losses depends on Voltage. That's why th	ng through
2.0	
Insulation Losses depends on Voltage. That's why th	sor
	rating of
Transformer is in kVA.	
What is the current transformer?	
a) transformer used with an A.C. voltmeter	
b) transformer used with an A.C. ammeter	5
c) transformer used with an D.C. voltmeter	*103
d) transformer used with an D.C. ammeter	
5	111
Angreen h tuansformer was divith an A.C. ammatan	1M
Answer: b. transformer used with an A.C. ammeter Explanation: A transformer used to extend the range	of an A C
ammeter is known as a current transformer. A curre	· . · / / P
transformer is also abbreviated as C.T.	
transformer is also appreviated as C.1.	5
Transformer core is generally made of	
a) Cannot be determined	200
b) Can be made with any of the above method	
c) By stacking large number of sheets together	
d) Single block of core material	
6 Answer: c. By stacking large number of sheets togeth	er 1M
	Carrie
when transformer is in the operations. In order to re	X
current losses, it is advisable to use large number of	~0
laminated from each other are stick together than u	
single block.	
	. 0
The purpose of the transformer core is to provide _	
a) Low reluctance path b) High industive path	
b) High inductive path	1M
c) High capacitive path	
d) High reluctance path	
	*

Mailos	Answer: a. Low reluctance path	Maillos
	Explanation: The purpose of a transformer core is to provide a	
	low-reluctance path for the magnetic flux linking primary and	
	secondary windings. In doing so, the core experiences iron	
	losses due to hysteresis and eddy currents flowing within it	
::(5)	which, in turn, show themselves as heating of the core material.	(Silv
	Transformers are generally designed for	97.
	a) one-time use	
	b) off-site problem solving	
	c) short-time use	
	d) on-site problem solving	
R	Answer: d. on-site problem solving	1M
5	Explanation: Every transformer is designed for use it for	(5)
	multiple years, thus transformers are designed to handle the	
0.0	problems on site itself because it not only saves time but also	00
	makes repairing work easy.	
	Primary winding of a transformer	
. 0	a) Could either be a low voltage or high voltage winding	
	b) Is always a high voltage winding	
	c) Cannot be determined	
.:.05	d) Is always a low voltage winding	.:.05
	Answer: a. Could either be a low voltage or high voltage winding	
	Answer. a. Court ettner be a row vortage or migh vortage winding	1M
9	Explanation: Primary winding used in a transformer, can be at	
	higher or lower voltage potential, depending on the number of	
	turns with secondary winding. For step up and step-down	
ci.	transformers primary winding will be at lower and higher	cill.
×	potential respectively.	× C
		3.
0,		(),

COLL		
	An ideal transformer will have maximum efficiency at a load	
	such that	
	a) copper loss > iron loss	
	b) cannot be determined	
	c) copper loss = iron loss	
. 0	d) copper loss < iron loss	
10		1M
	Answer: c. copper loss = iron loss	11/1
::(0)	Explanation: Maximum efficiency of a transformer is defined at	::(0)
	that value when copper losses become completely equal to the	
	iron losses. In all other cases the efficiency will be lower than	
	the maximum value.	•
	the maximum value.	
+. (2	Power transformers are designed to have maximum efficiency	
0	at	
	a) Full load	
.:.05	b) 50% load	.:.05
	c) 80% load	
	d) No load	1M
11	Answer: - a) Full load	
	Explanation: Power transformers are operated on full load	
. 0	hence power transformers are designed to have maximum	
0	efficiency at full load.	
	Transformer core are laminated in order to	
::(0)	a) Reduce hysteresis loss	::(0)
	b) Reduce hysteresis & eddy current loss	
	c) Minimize eddy current loss	
·	d) Copper loss	•
12	Answer: - a) Reduce hysteresis loss	1M
+ 12	Explanation:The iron core of a transformer is laminated to	
0	reduce eddy currents. Eddy currents are the small currents that	
cilli	result from the changing magnetic field	C
×63	Breather is provided in a transformer to	* C
- O. T	a) Absorb moisture of air during breathing	1M

		<u> </u>
13	b) Provide cold air in the transformer	1 .:.0
	c) The filter of transformer oil	
~	d) None of above	9
	Answer: - a) Absorb moisture of air during breathing	
	Explanation: The breather is used in the transformer to filter out	
1 . 6	the moisture from the air.	
08	The leakage flux in a transformer depends upon the value of	
csin.	a) Frequency	::05
Nail.	b) Mutual Flux	Mail
	c) Load current	
14	d) Applied Voltage	1M
	Answer: -c) Load current	
	Explanation: The leakage flux depends on load current,	
silos)	independent of voltage, frequency, and power factor.	ij (S)
	In a transformer ideally the resistance between its primary and	20-
	secondary is	
	a) Zero	
	b) Infinite	
	c) 1000 ohm	
	d) 100 ohm	
515	Answer: - b) Infinite	1M
15	Explanation: An ideal transformer should have infinite	
0.	resistance between the primary and secondary winding.	(0.
	However, the resistance may be in order of Gega ohms or Tera	
	Ohms depending on the insulation between the primary and	
	secondary winding.	
	Which winding in a transformer has more number of turns?	
	(A) Secondary winding	
-5	(B) Primary winding	1M
16	(C) High voltage winding	TIM
10	(D) Low voltage winding	

	- Chi
xiC3 xiC3	*(0)
	20,
Explanation: High voltage winding always has a large number of	
turns, as voltage is directly proportional to the number of turns.	
An autotransformer can be used as	
(A) Step up device	
(B) Step down device	* 1
(C) Both step up and step down	
(D) None of the above	.:.03
Answer: - C Both step up and step down	
Explanation: An autotransformer can be both a step-up and	1M
step-down transformer. It is a type of transformer that has a	
single winding that is shared by both the primary and secondary	
circuits. This means that the autotransformer can be used to	
either increase or decrease the voltage, depending on how the	***
windings are connected.	-0
In an Auto Transformer, The Primary and Secondary are	.05
X/O	
(A) Electrically only	~.··
	1M
Answer: -C Both electrically & magnetically	TIVI
The state of the s	5
*/0	
	20-
Which of the following are applications of Auto-transformer?	
(A) Head as switch	
	1M
	**
(D) All of the above Answer: - D. All of the above	
	turns, as voltage is directly proportional to the number of turns. An autotransformer can be used as (A) Step up device (B) Step down device (C) Both step up and step down (D) None of the above Answer: - C Both step up and step down Explanation: An autotransformer can be both a step-up and step-down transformer. It is a type of transformer that has a single winding that is shared by both the primary and secondary circuits. This means that the autotransformer can be used to either increase or decrease the voltage, depending on how the windings are connected. In an Auto Transformer, The Primary and Secondary are Coupled (A) Electrically only (B) Magnetically only (C) Both electrically & magnetically (D) None of the above Answer: - C Both electrically & magnetically Explanation: An auto transformer is a one winding (or) single circuit transformer, in which a portion of the winding is common for both high voltage and low voltage winding. And this entire winding will be placed on a single magnetic core

		~
	Explanation: Autotransformer is used as switch, it is used for	
	voltage correction.	
~	Which of the following is the major disadvantage of	
	Autotransformer?	
	(A) No primary and secondary wire isolation	
. 0	(B) Insulation failure of primary winding may damage the whole	
	autotransformer	
	(C) Individual earthing of winding is not possible	
. (2)	(D) All of the above	
20	Answer: - D All of the above	1M
20	Explanation: The main disadvantage of the autotransformer is	400
	that it does not have electrical isolation between primary and	
	secondary windings. If primary winding may damage the whole	
	autotransformer may fail.) Individual earthing of winding is not	
	possible	
	The size of the transformer core mainly depends on	
. (5)	(A) Frequency	. (5)
	(B) Area of core	
7.00	(C) Flux density of core	200
	(D) Both frequency and area of core	
	Answer: - D. Both frequency and area of core	
. 0		1M
21	Explanation:For a given transformer rating, as the frequency	
	increases the product of window area and cross sectional area	
, (15)	of the limb decreases; which means the iron required for the	.(5)
	core decreases. Therefore as the frequency increases, the	
100	transformer becomes lighter and smaller in size.	
	Auto-transformer makes effective saving on copper and copper	
	losses, when its transformation ratio is	
	a) Approximately equal to one	
05	b) Less than one	
	c) Great than one	1M
23	d) Cannot be found	
	a) dames of the control of the contr	

Answer: a. Approximately equal to one	.:.(
Explanation: Copper In auto transformer /copper in two-	100
winding transformer = 1- T2/T1. This means that an auto	
transformer requires the use of lesser quantity of copper given	
by the ratio of turns. Hence, if the transformation ratio is	
approximately equal to one, then the copper saving is good and	
the copper loss is less.	
Auto-transformer makes effective saving on copper and copper	
losses, when its transformation ratio is	
a) Approximately equal to one	
b) Less than one	
c) Great than one	
d) Cannot be found	
in Camillot be found	
Answer: a. Approximately equal to one	1M
Explanation: Copper In auto transformer /copper in two-	
winding transformer = 1- T2/T1. This means that an auto	
transformer requires the use of lesser quantity of copper given	
by the ratio of turns. Hence, if the transformation ratio is	
approximately equal to one, then the copper saving is good and	
the copper loss is less.	
Total windings present in a autotransformer are	
a) 1	
b) 2	27.
c) 3	
d) 4	
	435
25	1M
Answer: a. 1	
Explanation: Autotransformer is the special transformer for	
which the single winding acts as a primary and secondary both.	
Thus, by taking the appropriate winding into consideration a	37.

.:.69	variable secondary voltage is obtained.	.:.0
	What are the modes in which power can be transferred in an	
	autotransformer?	
7	a) Conduction	
	b) Induction	
CO.	c) Conduction and Induction	GC C
::(0)	d) Cannot be said	4.00
		20,
	Answer: c. Conduction and Induction	1M
	Explanation: In two winding transformer there is no electrical	
26	connection between primary and secondary. So, the power is	
.<2	transferred through induction. But in auto-transformer there is	
	a common electrical path between primary and secondary. So,	
5	power is transferred through both conduction and induction	5
X	processes.	N/O
20.	What will happen if DC shunt motor is connected across AC	0.
	supply?	
	a) Will run at normal speed	
	b) Will not run	
	c) Will Run at lower speed	
	d) Burn due to heat produced in the field winding	
. (5)		. (5)
ajo		1M
27	Answer: d Burn due to heat produced in the field winding	W.O.
	Explanation: In case of parallel field connection, it won't rotate	
	at all and will start humming and will create vibrations, as a	
:\2	torque produced by positive and negative cycle will cancel out	
e dila	each other. DC motor will be heated up and it may burn.	
.:.09	What will happen if the back emf of a DC motor vanishes	.:.05
	suddenly?	100
	a) The motor will stop	1M
•		

	colli		
	3	b) The motor will continue to run	(
		c) The armature may burn	
100	28	d) The motor will run noisy	400
		Answer: c. The armature may burn	
		Explanation: If back emf vanishes suddenly, motor circuit will	
	S	try to retain back emf by drawing more current from supply. If	
X		supplying unit didn't trip down by this time, excess current in	
War		armature may heat up the armature.	War
		What will happen, with the increase in speed of a DC motor?	
		a) Back emf increase but line current falls.	
	÷. (b) Back emf falls and line current increase.	
		c) Both back emf as well as line current increase.	
		d) Both back emf as well as line current fall.	
	55.	::(03)	.:.0
20,0	•	Answer: a. Back emf increase but line current falls.	1M
		Explanation: In case of DC motor, the speed is proportional to	
	29	the back emf (Ea \propto N). So, with the increase in speed, the back	
		emf also increases. Therefore, armature current is also	
		decreased, in case of series motor, armature current is equal to	
		the line or load current.	
	C		
X		Which part will surely tell that given motor is DC motor and not	N/C
20.0		an AC type?	
		a) Winding	
		b) Shaft	
		c) Commutator	
		d) Stator	1M
	30	Answer: c. Commutator	
War		Explanation: All other parts except brushes and commutator	400

69	are same in AC machine when outer looks are only taken in	
	consideration. Commutator is used only in DC machine for	
400	providing mechanical rectification and not in AC machine.	100
	Direction of rotation of motor is determined by	
	a) Faraday's law	
30	b) Lenz's law	
	c) Coulomb's law	
5	d) Fleming's left-hand rule	25
X	ilo-	
~2.	the state of the second st	20-
	Answer: d. Fleming's left-hand rule	1M
31	Explanation: Flemings laws can be summarized as whenever, a	
.2	current carrying conductor comes under a magnetic field, there	
	will be a force acting on the conductor and on the other hand, if	
COL	a conductor is forcefully brought under a magnetic field, there	c C
:,0"	will be an induced current in that conductor.	:(0)
	The current drawn by the armature of DC motor is directly	
	proportional to	
	a) Torque	
. 0	b) Speed	
	c) The voltage across the terminals	
	d) Cannot be determined	
. (-5)	. (2)	3
منات	Answer: a. Torque	1M
32		7,0
	Explanation: From the equation of torque generated in a DC	
	machine, we know that in both DC motor and DC generator,	
	current drawn is directly proportional to the torque required by	
	the machine.	
6	Which power is mentioned on a name plate of a motor?	- 6
	a) Gross power	4/0~
2	b) Power drawn in kVA	1M
	U) I UWCI MIAWII III IXVII	

c) Power drawn in kW d) Output power available at the shaft Answer: d. Output power available at the shaft Explanation: Name plate of the motor shows rated values i.e. rated speed, rated current, rated voltage. It also shows output power available at shaft when all other quantities are set to rated values. Which of the following quantity will decrease if supply voltage is increased? a) Starting torque b) Operating speed c) Full-load current d) Cannot be determined Answer: c. Full-load current Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease to rouge at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke, poles, armature windings, field windings, commutator, and			
Answer: d. Output power available at the shaft Explanation: Name plate of the motor shows rated values i.e. rated speed, rated current, rated voltage. It also shows output power available at shaft when all other quantities are set to rated values. Which of the following quantity will decrease if supply voltage is increased? a) Starting torque b) Operating speed c) Full-load current d) Cannot be determined Answer: c. Full-load current Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush 1M (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,	.:.09	c) Power drawn in kW	(
Explanation: Name plate of the motor shows rated values i.e. rated speed, rated current, rated voltage. It also shows output power available at shaft when all other quantities are set to rated values. Which of the following quantity will decrease if supply voltage is increased? a) Starting torque b) Operating speed c) Full-load current d) Cannot be determined Answer: c. Full-load current Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,	33	d) Output power available at the shaft	
Explanation: Name plate of the motor shows rated values i.e. rated speed, rated current, rated voltage. It also shows output power available at shaft when all other quantities are set to rated values. Which of the following quantity will decrease if supply voltage is increased? a) Starting torque b) Operating speed c) Full-load current d) Cannot be determined Answer: c. Full-load current Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,	00		000
Explanation: Name plate of the motor shows rated values i.e. rated speed, rated current, rated voltage. It also shows output power available at shaft when all other quantities are set to rated values. Which of the following quantity will decrease if supply voltage is increased? a) Starting torque b) Operating speed c) Full-load current d) Cannot be determined Answer: c. Full-load current Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,		Answer: d. Outnut nower available at the shaft	
rated speed, rated current, rated voltage. It also shows output power available at shaft when all other quantities are set to rated values. Which of the following quantity will decrease if supply voltage is increased? a) Starting torque b) Operating speed c) Full-load current d) Cannot be determined Answer: c. Full-load current Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush 1M (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,		This were at output power available at the share	
power available at shaft when all other quantities are set to rated values. Which of the following quantity will decrease if supply voltage is increased? a) Starting torque b) Operating speed c) Full-load current d) Cannot be determined Answer: c. Full-load current Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,		Explanation: Name plate of the motor shows rated values i.e.	
rated values. Which of the following quantity will decrease if supply voltage is increased? a) Starting torque b) Operating speed c) Full-load current d) Cannot be determined Answer: c. Full-load current Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,		rated speed, rated current, rated voltage. It also shows output	
Which of the following quantity will decrease if supply voltage is increased? a) Starting torque b) Operating speed c) Full-load current d) Cannot be determined Answer: c. Full-load current Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,	5	power available at shaft when all other quantities are set to	
is increased? a) Starting torque b) Operating speed c) Full-load current d) Cannot be determined Answer: c. Full-load current Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,	XIV	rated values.	
is increased? a) Starting torque b) Operating speed c) Full-load current d) Cannot be determined Answer: c. Full-load current Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,		Which of the following quantity will do group if gumply voltage	- O.
a) Starting torque b) Operating speed c) Full-load current d) Cannot be determined Answer: c. Full-load current Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush 1M (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,			
b) Operating speed c) Full-load current d) Cannot be determined Answer: c. Full-load current Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,			
c) Full-load current d) Cannot be determined Answer: c. Full-load current Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,			
d) Cannot be determined Answer: c. Full-load current Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush 1M (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,	•		
Answer: c. Full-load current Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,			
Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,	C	d) Cannot be determined	
Explanation: When supply voltage is increased full load current will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,		Answer: c. Full-load current	1M
will decrease in order to keep output power constant, which will decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,	34		Ser.
decrease torque at that moment, while starting torque will remain as it is, irrespective of any change in supply voltage. The main parts of d.c. motor (a) Yoke (b) Armature core (c) Commentator (d) Brush 1M (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,		.01	(),
The main parts of d.c., motor (a) Yoke (b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,			
(a) Yoke (b) Armature core (c) Commentator (d) Brush 1M (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,		remain as it is, irrespective of any change in supply voltage.	
(a) Yoke (b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,			
(b) Armature core (c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,		The main parts of a.c. motor	
(c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,	G	(a) Yoke	
(c) Commentator (d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,	x		*/(
(d) Brush (e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,	0.0	(b) Armature core	000
(e) All of the above Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,	.0,	(c) Commentator	4.
Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,		(d) Brush	1M
Answer: - (e) All of the above Explanation: The main components are: a stator, a rotor, a yoke,	*. ((e) All of the above	
Explanation: The main components are: a stator, a rotor, a yoke,	35	(e) This of the above	
		Answer: - (e) All of the above	
		Evaluation: The main components are a states a reter a velve	
pores, ar mature windings, neru windings, commutator, and			
	00	pores, ar mature windings, neid windings, commutator, and	100
			*

cillin		
	brushes.	- ilos
40.	Application of Universal Motor	40
	(a) Robotics	
	(b) Textile industries	
	(c) Mixer	
50	(d) Automotive	. (5)
	Answer :- (c) Mixer	2
36	Explanation: The Universal motor is used for purposes where	
	speed control and high values of speed are necessary. The	
	various applications of the Universal Motor are as follows:	
	Portable drill machines.	
cll.	Used in hairdryers, grinders, and table fans.	cil
×C ²	A universal motor is also used in blowers, polishers, and kitchen	*(0)
20	appliances.	War.
	Where is field winding mounted in a DC machine?	
	a) Stator	
	b) Rotor	
	c) Absent	
	d) Anywhere on stator or rotor	
-5	Answer: a. Stator	1M
37		
37	Explanation: The field winding (concentrated type) is mounted	200
	on salient-poles on the stator and the armature winding	
	(distributed type) is wound in slots on a cylindrical rotor.	
	What are the materials used for brushes in dc machines?	
	a) Iron	
5	b) Carbon	1M
x,C	c) Aluminum	×
	d) Steel	200

Answer: b. Carbon Explanation: On some extent carbon brush can act as a self- lubricating brush. On moment, polishes the commutator segments. Damage to the commutators is less when copper brushes are used on occurrence of sparkover. Function of yoke is to provide the return path for magnetic flux. a) True b) false Answer: a) True Explanation: The function of yoke is that it protects the entire machine from dust and dirt. It also provides mechanical support for the magnetic poles. It acts as the return path for the magnetic flux. Which of the following part is used in construction of DC
Explanation: On some extent carbon brush can act as a self- lubricating brush. On moment, polishes the commutator segments. Damage to the commutators is less when copper brushes are used on occurrence of sparkover. Function of yoke is to provide the return path for magnetic flux. a) True b) false Answer: a) True Explanation: The function of yoke is that it protects the entire machine from dust and dirt. It also provides mechanical support for the magnetic poles. It acts as the return path for the magnetic flux.
lubricating brush. On moment, polishes the commutator segments. Damage to the commutators is less when copper brushes are used on occurrence of sparkover. Function of yoke is to provide the return path for magnetic flux. a) True b) false Answer: a) True Explanation: The function of yoke is that it protects the entire machine from dust and dirt. It also provides mechanical support for the magnetic poles. It acts as the return path for the magnetic flux.
segments. Damage to the commutators is less when copper brushes are used on occurrence of sparkover. Function of yoke is to provide the return path for magnetic flux. a) True b) false Answer: a) True Explanation: The function of yoke is that it protects the entire machine from dust and dirt. It also provides mechanical support for the magnetic poles. It acts as the return path for the magnetic flux.
Answer: a) True Explanation: The function of yoke is that it protects the entire machine from dust and dirt. It also provides mechanical support for the magnetic flux.
Function of yoke is to provide the return path for magnetic flux. a) True b) false Answer: a) True Explanation: The function of yoke is that it protects the entire machine from dust and dirt. It also provides mechanical support for the magnetic poles. It acts as the return path for the magnetic flux.
a) True b) false Answer: a) True Explanation: The function of yoke is that it protects the entire machine from dust and dirt. It also provides mechanical support for the magnetic poles. It acts as the return path for the magnetic flux.
Answer: a) True Explanation: The function of yoke is that it protects the entire machine from dust and dirt. It also provides mechanical support for the magnetic poles. It acts as the return path for the magnetic flux.
Answer: a) True Explanation: The function of yoke is that it protects the entire machine from dust and dirt. It also provides mechanical support for the magnetic poles. It acts as the return path for the magnetic flux.
Explanation: The function of yoke is that it protects the entire machine from dust and dirt. It also provides mechanical support for the magnetic poles. It acts as the return path for the magnetic flux.
Explanation: The function of yoke is that it protects the entire machine from dust and dirt. It also provides mechanical support for the magnetic poles. It acts as the return path for the magnetic flux.
Explanation: The function of yoke is that it protects the entire machine from dust and dirt. It also provides mechanical support for the magnetic poles. It acts as the return path for the magnetic flux.
machine from dust and dirt. It also provides mechanical support for the magnetic poles. It acts as the return path for the magnetic flux.
for the magnetic poles. It acts as the return path for the magnetic flux.
magnetic flux.
Which of the following part is used in construction of DC
which of the following part is used in construction of Be
machine but not in AC machine?
a) Armature Winding
b) Field winding
c) Commutator
d) Shaft
1M
Answer: c. Commutator
Explanation: Commutator is used in mechanical rectification
process, to convert induced AC to output DC. In AC machine, we
don't need rectification process.
don't need rectineation processi
In normal dc machines operating at full-load conditions, the
most powerful electromagnet is
a) Field winding
b) Interpole Winding 1M
c) Interpole and compensating winding together
d) Armature winding

- GOIII			- coll
41	Answer: a) Field winding	ajilos .	dices
.00	Explanation: Electromagnet is more p	nowarful when its MMF is	9
	high. At full-load condition, field wind		
	ampere turns, hence it is most power	_	
	machine.	.0	
.(1)			
S	Which of the following d.c. motor has	highest speed at no-load	Silv
× O	condition?	xiC3	×10°
A.	Cumulative compound motor	000	200
	Shunt motor		
c.	Differentially compound motor		
	series motor		1M
	Answer: D. series motor		1 IVI
42	Explanation: At no load, armature cur	rrent tends to zero, flux φ	
	tends to zero, where speed is inversel		
	and speed will tend to infinity. Thus, i		
.00	motor is highest.	W.	9
	Following diagram represents the equ	uivalent circuit of	
	Tonowing diagram represents the equ	arvaicint circuit or	
Mailshin	V _a R _a E	I _f V _f	1M
4. ()	arm ature winding Long shunt compound wound motor Short shunt compound wound motor Separately excited d.c. motor	field winding	Maileshi

::(69)	Shunt wound d.c. motor	1 ::05
	Answer: C. Separately excited d.c. motor	
	Explanation: A separate power supply is provided to field in	
	separately excited d.c. motor.	
	Separately excited u.c. motor.	
	Differentially compound DC motors are used in applications	
	requiring	
	a) High starting torque	C
: (0)	b) Low starting torque	: 0
	c) Variable speed	
	d) Frequent on-off cycles	
44	Anguar h Law stanting tangna	1M
	Answer: b. Low starting torque Explanation: Compound motor shows combine affect of shunt	
	Explanation: Compound motor shows combine effect of shunt	
	and series field windings. Differential compound series motor	
6	gives low starting torque, examined by torque current	C
XIO T	characteristic. Hence, applications with low starting torque are	XIV-
~0.,	called in differentially compound DC motor.	
	A universal motor is one which	
	A. Is available universally	
В	3. Can be marketed internationally	
	C. Can be operated either on dc or ac supply	
S	Runs at dangerously high speed on no-load	1M
45	Answer: C. Can be operated either on dc or ac supply	IIVI CO
20	Explanation: Universal Motor is a special type of motor that can	
	run on a DC supply or a single-phase AC supply. Since it can run	
	both on AC and DC, it is called a universal motor.	
•. 6	Speed of the universal motor is	
	A. Dependent on frequency of supply	
B	3. Proportional to frequency of supply	1M
	C. Independent of frequency of supply	1111
20.	None of the above	202

::(69)	Answer: C. Independent on frequency of supply	.:.0
	Explanation: Brushed universal motors are largely independent	20,7
	of AC frequency,	
	Which of the following motor can be referred as a universal	
	motor?	
	a) DC shunt motor	
	b) DC compound motor	
.:.05	c) Permanent magnet motor	.:.0
	d) DC series motor	
		1M
47	Answer: d DC series motor	
	Explanation: DC series motor can operate on DC and AC. It is a	
	universal motor. Universal motors are those motors that can	
	operate on both DC and AC. DC shunt motor can only operate on	
. (5)	DC because of pulsating torque in AC.	
	Universal motor have which of the following application?	
(1)00		100
	A. Domestic pump.	
	B. Food mixer. C. Traction.	
	D. Lift.	
5	Answer: B. Food mixer.	
	Explanation: Out of the given options, a food mixer is a common	
.0.0	application for a universal motor. Food mixers typically require	1M
48	a motor that can operate on both AC and DC power, allowing for	
	versatile use in different settings. The universal motor's ability to operate on both AC and DC power makes it suitable for	
	powering food mixers, where the user may switch between AC	
	and DC power sources.	
collin	ch' ch'	
*(0)	While domestic pumps, traction systems, and lifts can use	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>
	electric motors, they often require specific types of motors that	3,
		4.

	are tailored to their specific requirements, such as induction	10
	motors, synchronous motors, or specialized DC motors.	
00	Universal motor is used in vacuum cleaners, table fans and	
	portable drilling machine.	
	a) True	
. 0	b) False	
49	Answer: a. True	1M
	Explanation: The universal motor is dc series motor with ac	.:.05
	supply with smaller torque. So it can be used for lower torque	
00	applications.	9
	The rotor of a stepper motor has no	
. 0	a) Windings	
	b) Commutator	
	c) Brushes	
. (5)	d) All of the mentioned	. (5
70		1M
50	Answer: d. All of the mentioned	Vic.
	Explanation: A stepper motor has a cylindrical permanent	
	magnet rotor. Thus it does not contain windings, commutator or	
. 0	brushes mounted on it.	
	A stepping motor is a device.	
	a) Mechanical	
. (5)	b) Electrical	. (5
	c) Analogue	
V.0.	d) Incremental	V.C.
	1)	1M
	Answer: d) Incremental	TIVI
51	Explanation: A stepping motor is a motor in which the motion is	
	in the form of steps and is an incremental device in which as the	
	time increases the steps are increased.	
. , 5	time mercuses the steps are mercusea.	. (5
	The rotational speed of a given stepper motor is determined	
~`0`	solely by the	1M

		cS
:(0)	a) Shaft load	
2	b) Step pulse frequency	
52	c) Polarity of stator current	
32	d) Magnitude of stator current.	
. 0	Answer: b. Step pulse frequency	
	Explanation: The stator part of a motor is the stationary part of	*
	the motor and rotational speed of a given stepper motor is given	
ail Co.	by the step pulse frequency.	dilos
0.0	A stepper motor may be considered as a converter.	~
	a) Dc to dc	
	b) Ac to ac	
	c) Dc to ac	
	d) Digital-to-analogue	
		1M
53	Answer: d. Digital-to-analogue	5
33	Explanation: A stepper motor is a motor in which the motion is	
	in steps and it is an increemental device and may be considered	
	as a digital to analog converter.	
	Which type of motor uses brushes and a commutator?	
	a) DC motor	
	b) AC motor	
. (5)	20	. (5)
3100	c) Induction motor	
.0.	d) Synchronous motor	1M
	Answer: a) DC motor	
54		
	Explanation: DC motors use brushes and a commutator to	
	achieve the conversion of electrical energy into mechanical	
	energy.	
-5	Which type of motor does not require a constant power course	5
	Which type of motor does not require a separate power source	1M
0.0	for the rotor?	(0.

collin	elli, elli,	- GN
×iCo	a) Synchronous motor	× V
000	b) Induction motor	200
	c) Brushless DC motor	
55	d) Universal motor	
:32	Answer: b) Induction motor	
	Explanation: In an <u>induction motor</u> , the rotor is powered by	
65	electromagnetic induction from the stator, eliminating the need	5
	for a separate power source.	
		1.00
	What is the primary function of the stator in an electric motor?	
	a) To provide mechanical support	
	b) To generate a rotating magnetic field	
	c) To convert electrical energy into mechanical energy	
S	d) To regulate the motor's speed	1M
×10°	Answer: b) To generate a rotating magnetic field	1110
000	Answer. by To generate a rotating magnetic netu	200
56	Explanation: The stator carries the windings that create a	
	rotating magnetic field, which interacts with the rotor to	
	produce motion in an electric motor.	
	Which type of motor is commonly used in household appliances	•.<
CUI,	like refrigerators and air conditioners?	6.01
a di Co	a) Single-phase induction motor	,:(05
20	b) Synchronous motor	25,
	c) Brushless DC motor	
	d) Universal motor	1M
	,	
57	Answer: a) Single-phase induction motor	
	Explanation: Single-phase induction motors are widely used in	
5	household appliances due to their simplicity, low cost, and	. (5)
ijos	reliable performance.	
V.		

COM		
xiC ³	What determines the speed of a DC motor?	xiC
000		Sorr
	a) Number of poles b) Applied voltage	
	c) Armature resistance	
. 0	d) Back EMF	
58		1M
SUL	Answer: d) Back EMF	
* 0	Explanation: The speed of a DC motor is determined by the back	N/C
0.0.0	electromotive force (EMF) generated in the armature coil, which	00.0
	opposes the applied voltage.	
	Which type of motor provides the highest starting torque?	
3	a) DC series motor	
	b) DC shunt motor	
5	c) AC induction motor	. (
	d) Brushless DC motor	1M
59	Answer: a) DC series motor	1010
	Explanation: DC series motors provide high starting torque due	
.0	to their characteristic of high armature current and strong field	
	interaction.	
5	Which motor is suitable for applications requiring variable	
	speed control?	
.00	a) DC motor	0.0
	b) AC motor	
	c) Stepper motor	
.0	d) Synchronous motor	1M
60		
5	Answer: a) DC motor	
Ni V	Explanation: DC motors are suitable for <u>variable speed</u>	
0.0	<u>control</u> applications as their speed can be easily adjusted by	200

		CS
::(0)	controlling the input voltage or current.	::(0)
Mar	Which motor is commonly used in ceiling fans?	Warr
Ť	a) Single-phase induction motor	
	b) Synchronous motor	
	c) Brushless DC motor	
	d) Universal motor	1M ·
C 61	Answer: a) Single-phase induction motor	Silosi
	Explanation: Ceiling fans typically use single-phase induction	
	motors due to their cost-effectiveness and reliable performance.	
	Which type of motor is used in robotics and precision control	
. 0	applications?	
	a) Stepper motor	•
Silvi	b) AC induction motor	S
×,C	c) Synchronous motor	410
20.0	d) Brushless DC motor	1M
62		
	Answer: a) Stepper motor	
	Explanation: Stepper motors are commonly used in robotics	
0	and precision control applications due to their ability to move in	•
c/l	discrete steps and hold position without the need for feedback.	6
× C	Which motor is commonly used in electric pumps?	4100
20.0		0.0
	a) Single-phase induction motor b) Synchronous motor	
	c) Brushless DC motor	
	d) Universal motor	1M
		IN
63	Answer: a) Single-phase induction motor	
.:.05	Explanation: Electric pumps often use single-phase induction	05
	motors due to their reliability and ability to operate on single-	
	motors and to men remaining and ability to operate on single-	

::(5)	phase power supply.	::05
War	Which motor type is suitable for high-speed applications?	Warr
	a) Brushless DC motor	
	b) DC series motor	
	c) Induction motor	
	d) Universal motor	1M
64	Answer: a) Brushless DC motor	IIVI ST
0.	Explanation: Brushless DC motors are suitable for high-speed	0.
	applications due to their ability to operate at high rotational	
	speeds and provide precise <u>speed control</u> .	
	Which motor type is commonly used in household washing machines?	
ilos.	a) Universal motor	.:.05
	b) Induction motor	
	c) Brushless DC motor	
	d) Stepper motor	1M
65	Answer: b) Induction motor	
	Explanation: Household washing machines typically use	
	induction motors due to their reliability, low cost, and ability to	
. (5)	handle variable loads.	. (5)
	Which motor type is commonly used in robotic vacuum	
	cleaners?	
	a) Brushless DC motor	
	b) DC series motor	
	c) Induction motor	1M
S	d) Stepper motor	cs (
66	xiC3	400
20.	Answer: d) Stepper motor	200

	Explanation: Robotic vacuum cleaners often use stepper motors	1 .: 0
	for precise control of movement and positioning.	
	What is the primary disadvantage of a universal motor?	
	a) Limited speed range	
:<2	b) Lower efficiency	
	c) Larger size	
6	d) Complex control circuitry	1M
ail Co	Answer: b) Lower efficiency	
	Answer: b) Lower efficiency	
67	Explanation: Universal motors have lower efficiency compared	
	to other motor types due to the energy losses associated with	
	their universal commutator.	
75	Which motor type is commonly used in electric fans?	
	which motor type is commonly used in electric lans:	
6	a) Synchronous motor	5
ijos	b) DC shunt motor	
0,0	c) Induction motor	0.0
	d) Universal motor	434
		1M
68	Answer: a) Synchronous motor	
00	Explanation: Electric fans often use synchronous motors due to	
	their ability to operate at a constant speed and maintain	
. (5)	synchronization with the power supply frequency.	. (5)
NO S		
100	Which motor type is commonly used in CNC machines and 3D	V.00
	printers?	
	a) Stepper motor	
.7	b) DC shunt motor	
	c) Synchronous motor	1M
69	d) Brushless DC motor	c (C)
**(0)	;;(C ²)	*(0)
	Answer: a) Stepper motor	20,

Callin		
::(0)	Explanation: CNC machines and 3D printers often use stepper	::(05)
	motors due to their precise positioning capabilities and ease of	2011
	control.	
	What is the primary disadvantage of a stepper motor?	
	a) Limited speed range	
	b) Higher cost	
. (5)	c) Larger size d) Complex control circuitry	. (5)
70	u) complex control circuitry	1M
70	Answer: a) Limited speed range	W.O.
	Explanation: Stepper motors have a limited speed range	
	compared to other motor types, which can be a disadvantage in	
	certain high-speed applications.	
	Which motor type is commonly used in electric bicycles?	
	a) Brushless DC motor	
	b) DC series motor	
	c) Induction motor	, and the second
	d) Universal motor	1M
	Answer: a) Brushless DC motor	
71		
5	Explanation: Electric bicycles often use brushless DC motors	5
21100	due to their high efficiency, compact size, and ability to provide assistance at various speeds.	
.0.	assistance at various specias.	100
	Which motor type is commonly used in electric drills and power	
	tools?	
*_ (a) Universal motor	
	b) Synchronous motor	1M
670	c) Induction motor	61
5/2	d) Brushless DC motor	×10-

		6
x CS	Answer: a) Universal motor	1 400
3	Explanation: Electric drills and power tools often use universal	20,
	motors due to their high power-to-weight ratio and ability to	
	operate on both AC and DC power sources	
Sinis	Which motor type is commonly used in electric cars? a) Brushless DC motor	
. 69	b) Synchronous motor	. (5)
ail Co	c) Induction motor	
V.o.	d) Universal motor	1 _M
	Answer: a) Brushless DC motor	Tivi
73	Explanation: Electric cars often use brushless <u>DC motors</u> due to	
	their high efficiency, compact size, and ability to provide high	
5	torque at various speeds.	5
	Which motor type is commonly used in dishwashers and	
40.	washing machines?	100
	a) Universal motor	
	b) Synchronous motor	
: 2	c) Induction motor	
ill.)	d) Brushless DC motor	1M
74	Answer: c) Induction motor	*(05)
20,	Explanation: Dishwashers and washing machines commonly	
	use induction motors for their reliability, low maintenance, and	
	ability to handle variable loads.	
1		
	Differentially compound DC motors are used in applications	
	Differentially compound DC motors are used in applications requiring	
Silinis	requiring	1M 5
Silinis	requiring a) High starting torque	1M

75	Answer: b. Low starting torque	Sile
	Explanation: Compound motor shows combine effect of shunt	
	and series field windings. Differential compound series motor	•
	gives low starting torque, examined by torque current	
• (characteristic. Hence, applications with low starting torque are	
	called in differentially compound DC motor.	
::(5)(1)	::csinii	.:.0
	Which DC motor is more preferred for elevators?	3
	a) Shunt motor	
	b) Series motor	
	c) Differential compound motor	
• . (d) Cumulative compound motor	
	Answer: d. Cumulative compound motor	
.:.05/6	Explanation: Cumulative wound DC motors give high starting	1M
	torque like a series motor and reasonable good speed	
	regulation at high speeds like a shunt dc motor. As this type of	
	motor offers the best of both series and shunt motor, it is	
	practically suitable for most common applications like	
• . (elevators.	
. (5)	Which DC motor has got maximum self-loading property?	٠. (
	a) Series motor	
000	b) Shunt motor	
	c) Cumulative compound motor	
	d) Differential compound motor	
77		1M
	Answer: d. Differential compound motor	
. (5)	Explanation: A differentially compound DC motor, flux reduces	٠. ٥
	so sharply at small increase in load at higher values of load. It is	
W. C.	advisable that motor should not be used beyond some load	0.0

	value, as it may damage itself by self-loading.	(
	alle	Sill
	For the same H.P. rating and full load speed, which of the	
	following motor has poor starting torque?	
	a) Series motor	
	b) Shunt motor	
	c) Cumulative compound motor	
5	d) Differential compound motor	
× V		X
78	Answer: d. Differential compound motor	1M
	Explanation: In differential compound motor, series field	
	opposes shunt field. It has poor starting torque as the resultant	
	flux is minimized by this opposition. The flux starts decreasing	
	with increase in load. The decrease in flux cause the starting	
. (5)	torque to be less than any other DC motor.	٠. (
	DC motor is to a drive a load which is almost zero for certain	
W.O.	part of the load cycle and peak value for short duration. We will	400
	select	
	a) Series motor	
*. (b) Shunt motor	
0	c) Compound motor	
(22)	d) Any DC motors	
79	::(05)	1M
	Answer: c. Compound motor	
	Explanation: We can't use series motor as our load is almost	
	zero at some points. Thus, we'll use compound motor which can	
•_(work on no load also. Cumulative compound motor is provided	
	with flywheel so that this machine can deal with peak value.	
5	The direction of rotation of universal motor can be reversed the	
XIV-	by reversing the flow of current through	
.00.	a) Armature winding	TM

.:.0	b) Field winding	::05
	c) Either armature winding or field winding	
80	d) None of the above	600
80	Answer: c. Either armature winding or field winding	
	Explanation: The direction of rotation of universal motor can be	
	reversed the by reversing the flow of current through Either	
	armature winding or field winding	
.:.09	Universal motor is used in vacuum cleaners, table fans and	::(0)
	portable drilling machine.	
	a) True	
*	b) False	
*_	Answer: a. True	1M
81	Explanation: The universal motor is dc series motor with ac	
c Cilii	supply with smaller torque. So it can be used for lower torque	C C
C3	applications.	:.05
		2011
	Generator is used in arc welding purposes.	
	a) Differential compound dc	
	b) Dc series	
	c) Cumulative compounded dc	
	d) Shunt	
5	S	6
a in the second	Answer: a. Differential compound dc	1M
82	Explanation: The external characteristics of the differentially	100
	compound generator have minimum voltage for the high	
	current voltages. This is best harnessed feature for a high	
	current requirement by the welding application.	
	Militar makes of the Greek investment in the PASE.	
83	Which value of the flux is involved in the EMF equation of	(5)
	transformer	1M
~°°°	a) Average value	(0.

b)	R.M.S. Value	::(0'5
	Critical value	
a)) Maximum value	9
	Answer: Maximum value	
	Explanation: The instantaneous value of the flux is constantly	
. 0	changing, and is not a useful value to consider for the e.m.f.	
	equation of a transformer. Therefore, the value of flux involved	
	in the e.m.f. equation of a transformer is the maximum value.	
. 6	What criteria's are necessary to consider when selecting a	.()5
	stepper motor?	
~	a)Mechanical Motion.	V.0.
	b) Inertial Load	
	c) Speed Requirements	
84	d) All of the above	
	u) In or the above	1M
	Answer: d. All of the above	
-6	Explanation: The key performance specifications for sourcing a	C
	stepper motor are voltage, speed, torque, rotor inertia and step	
~0.	angle.	0.
	Which of the following motor rotates in discrete angular steps?	
a)	Servo motor	
b)	DC motor	
	Stepper motor	
-6) d	Linear Induction Motor (LIM)	C
NO T	Answer: c. Stepper motor	NO.
85	Allswei. C. Stepper motor	- IM
	Explanation: A stepper motor is a brushless DC electric motor	Livi
	whose rotor rotates in discrete angular increments when its	
	stator winding energized in a programmed manner. They have	
: 8	multiple coils that are organized in groups called phases. By	
(1)	energizing each phase in sequence, the motor will rotate, one	
S.	step at a time.	C
×10°	*:C ³	<u> </u>
86	Which type of device is a stepper motor?	
	a) Electromechanical	1M

::(0)	b) Electrochemical	.:(0
	c) Embedded system	
	d) Electromagnetic	
	Answer: a. Electromechanical	
. 0	Explanation: A stepper motor is an electromagnetic device	
	which converts the electrical pulses into discrete mechanical	
	movements. The shaft of the electrical motor.	
::(0)	Stepper motors are extremely reliable.	::(0
	a) True	20,
	b) False	
87	Answer: a. True	1M
	Explanation: There are no contact brushes in the motor,	1141
	therefore, the Stepper motors are extremely reliable. The life of	
6	the motor depends only upon the life of the bearings. Wide	
	ranges of rotational speed are possible.	
	Which among the following is not the type of a stepper motor?	00
	a) Variable reluctance	
	b) Permanent magnet	
	c) Hybrid	
	d) Variable magnet	
6.88	Answer: d. Variable magnet	1M.
	Explanation: Variable magnet is not the type of a stepper motor.	
	Variable reluctance stepper motor consists of a soft iron multi-	00
	toothed rotor and a wound stator. Permanent magnet stepper	
	motors have a rotor made up of the permanent magnet. Hybrid	
+, 0	stepper motor provides better performance with respect to step	
	resolution, torque and speed. A stopper motor is a had shoice whenever control movement is	
collin	A stepper motor is a bad choice whenever control movement is required.	
89	a) True	1M
00.	b) False	

CUII		
Mailos	Answer: b. False Explanation: A stepper motor is a good choice whenever control movement is required. They can be used in the applications	Mail
	where there is a need to control rotation angle, speed, position	
	and synchronism. Due to all these reasons, stepper motors are	
	used in many different applications.	
xi CSI	Which type of stepper motors have low cost and low-resolution motor?	
Mari	a) Permanent magnet stepper motor	War.
	b) Variable reluctance stepper motor	
	c) Hybrid stepper motor	
	d) DC motor	
90		1M
	Answer: a. Permanent magnet stepper motor	
	Explanation: The permanent magnet stepper motor has low	
	cost and low-resolution type motor with the step angle of 7.5%	
W.O.	to 15%. This type of stepper motor has a rotor made up of the	400
	permanent magnet. The other motors mentioned in the option	
	do not have low cost as well as low redundancy.	
÷. 6	Which of the following is not the main selection criterion of a	
	stepper motor?	
	a) Resolution required	
.:.(5)	b) Drive mechanism component required	.:.0
	c) Torque required	
	d) Speed	
91		
	Answer: d. Speed	1M
*_ «	Explanation: Speed is not the main selection criteria of a	
40	stepper motor. The selection criteria of a stepper motor	
C.C.	include resolution required, drive mechanism component,	
;;(C ³	operating pattern required such as sequencing, accelerationetc.	2.0
200	and torque required	Sir

.:.0	.:.03	.:.0
	What is the formula to calculate the step angle of a stepper	
	motor?	
	a) (360*ph.)/nph	
	b) (ph/nph)	
. (c) (nph/ph)	
	d) (360*nph)/ph	
C-02		
	Answer: a. (360*ph.)/nph	1M
	Explanation: The step angle is given by (360*ph)/nph where	
	'nph' is the number of equivalent poles per phase or number of	*
	rotor poles, 'ph' is the number of phases and 'n' is the total	
•_(number of poles in all phases.	
	In a DC series motor, if the armature current is halved, the	
* 0	torque of the motor will be equal to	2,10
2	a) 100% of the previous value	20,7
	b) 50% of the previous value	
	c) 25% of the previous value	
	d) 10% of the previous value	
93		
	Answer: c 25% of the previous value	1M
S	Explanation: Torque in the case of linear magnetization of DC	
	series motor is directly proportional to square of the armature	X
0.0	current. So, armature current is made 1/2th of the original	20.0
	value, then torque will be 1/4th of the original value.	
	The slot edges in a DC machine are made of	
	(A) mild steel	
94	(B) silicon steel	
, 5	(C) fibre	1M
	(D) cast iron	
100		100

c Clin		
.:.0	Answer: D cast iron	0
	Explanation: The outer frame of a dc machine is called as yoke.	
9	It is made up of cast iron or steel. It not only provides	600
	mechanical strength to the whole assembly but also carries the	
	magnetic flux produced by the field winding.	
. (In a shunt dc machine, the armature and field winding	
	resistance are respectively	
	(A) of higher values	
	(B) of lower values	05
95	(C) high and low	
	(D) low and high	TIM
	Answer: D low and high	
	Explanation: In DC shunt machine the armature resistance is	
*. 9	low and field winding resistance is high.	
0	The principle of dynamically induced emf is utilized in	
	(A) generator	c:S
.:(0)	(B) transformer	.:.05
96	(C) thermocouple	
	(D) choke	1M
•	Answer: A Generator	
	Explanation: An electric generator works on the principle	
	of electromagnetic induction.	
.(0)	In a transformer, the winding is tapped in the middle	•
COLL	(A) to avoid the radial forces on the windings	CS CS
	(B) to reduce the insulation level of the windings	
97	(C) to provide a mechanical balance to the windings	37
	(D) to eliminate the axial forces on the windings	1M
	Answer: D to eliminate the axial forces on the windings	
	Explanation: In a transformer, the winding is tapped in the	
	middle for voltage regulation and eliminate axial forces	
	What is the working principle of DC motor?	
C-98	a) Fleming's right hand rule	cs
	b) Fleming's left hand rule	1M
20	c) Maxwell's second law	20,

::(69)	d) Maxwell's third law	.:.0
Mail	Answer: b. Fleming's left hand rule	Warr
	Explanation: The working principle of motor Fleming's left	
• (hand rule. It states that, when a current carrying conductor is	
	place in a magnetic field then it experiences a force. The	
S	direction of force can be determined by Fleming's left hand rule.	
N N N N N N N N N N N N N N N N N N N	What is the full form of CPR with respect to motor movement?	
	a) Clocks per rotation	20.
	b) Counts per revolution	
	c) Counts per rotation	
	d) Clocks per revolution	
99	Answer: b. Counts per revolution	
5	Explanation: CPR stands for Counts per revolution with respect	1M
	to motor movement. 2 square pulses are generated at a time by	
	a typical motor encoder, CPR (Counts per revolution) is the is	
	the number of quadrature decode states that exists between	
	these two square pulses	
	AC motors do not have brushes.	
	a) True	
5	b) False	
	b) raise	
~	Answer: a. True	V.O.
100	Explanation: AC motors do not have brushes. Due to the absence	
	of brush mechanism AC motors have longer life expectancy. DC	1M
	motors comes in two forms, Brushed and Brushless motors. DC	
	motors without brushes are termed as BLDC (Brushless DC)	
	motors.	
:(03)	::(03	3.0
1		

Mailcelin Thank You in the state of the s Mailcsin Mailcshinia Malicshinia Mailcshinia Malicshir Mailcshinia Mailcshinia Mailcshinia Mailcshir Mailcshinia Mailcshinia Mailcshinia Mailcshi Malicshinia Maiicshinia Mailcshinia Mailcshir

Unit III	Eectrical Safety and Protective Devices	Marks - 10
S. N.	. 0.	Marks
0	What does "MCB" stand for?	
	a) Miniature circuit breaker	
::(0)	b) Mini circuit breaker	
2	c) Miniature capacitor breaker	3
	d) Mini Capacitance breaker	
1	Answer: a) Miniature circuit breaker	1M
.0		1141
	Explanation: "MCB" stands for Miniature circuit breaker. It	
5	works on magnetic effect of electric current. When there is	
XIV'	overflow of electric current, it creates a magnetic field that	
0	repels the magnet present in the switch. This repulsion	
	breaks the circuit and restricts the flow of current.	
	What is the principal on which MCB (Miniature circuit	
. (2)	breaker) works?	
2	a) Magnetic effect of electric current	
	b) Lenz law	1M
.:.0	c) Faradays law of electric current	
	d) Flemings Right hand rule	3
	Answer: a) Magnetic effect of electric current	
10	Explanation: MCB (Miniature circuit breaker) works on	
	magnetic effect of electric current. When there is overflow of	
5	electric current, it creates a magnetic field that repels the	
NO TO	magnet present in the switch. This repulsion breaks the	
0	circuit and restricts the flow of current.	20.0

:\0	What is the standard colour of ac supply ground wire in	::05
	India?	37
	a) Red	
	b) Magenta	
	c) Pink	
.0-	d) Green	
3	Answer: d) Green	1M
6		
XIO 3	Explanation: The standard colour of ac supply ground wire in	xiQ ³
000	India is green. Separate standard colours are assigned for	200
	wires carrying AC (Alternating current) supply which comes	
	in our homes in order to easily understand the significance of each wires.	
	each whes.	
	What is the standard colour of ac supply live wire in India?	
	a) Red	
. (5)	b) Magenta	. (5)
	c) Pink	a ill
100	d) Green	000
4	Answer: a) Red	1M
• 0	Explanation: The standard colour of ac supply live wire in	
	India is Red. Separate standard colours are assigned for wires carrying AC (Alternating current) supply which comes in our	•
c/ll.	homes in order to easily understand the significance of each	c ()
30	wires.	***************************************
20	WII C3.	20,
		0,

Mailcshinia

Mailcshinia

Mailcshir

Majicshinja

. (5)	What is the standard colour of ac supply neutral wire in	(1)
	India?	
600	a) Red	W.O.
	b) Black	
	c) Pink	
. 0.	d) Green	
5	Answer: b) Black	•.<
		1M
::(05)	Explanation: The standard colour of ac supply neutral wire in	::05
	India is Black. Separate standard colours are assigned for	
	wires carrying AC (Alternating current) supply which comes	
· ·	in our homes in order to easily understand the significance of	
	each wires.	
.0-	Green and yellow striped wire is also used to indicate ac	
	(alternating current) supply live wire.	
C	a) True	C
× 0°	b) False	×103
6	Answer: b) False	2000
	Explanation: Green and yellow striped wire is also not used to	1M
	indicate 220 volt ac(alternating current) supply live wire. It is	
	used to denote ground wire of an ac (alternating current)	
	supply. It is also called as earthing wire.	
	Live wire and hot wire are same.	
. (5)	a) True	. (5)
	b) False	
100	Answer: a) True	
7		
,	Explanation: Live wire and hot wire are same. Live wires are	1M
.0-	sometimes also referred as hot wires which carry's the supply	
	voltage. In India red colour is assigned for the indication of AC	
C()	(alternating current) live wire.	C)
× (C3	<u> </u>	×
20,		201

::(5)	Fuse is a device which is used for	::05
a)	protection	37
	amplification	
	impedance matching	
8 d)	none of above	
3.0	Answer: a) protection	1M
	Explanation: A fuse protects a system or equipment from	
6	overload and short-circuit faults by cutting off the power to	6
	them.	illo-
	Fuse are connected in Parallel.	
	a)True	
. 0.	b)False	
	Djraise	
9	Answer: b) False	
	Explanation:Fuses are always connected in series with the	1M
20	circuit to be protected from excessive current. When the fuse	2011
	blows it will open the entire circuit and interrupt or stop the	
	flow of current through the circuit.	
	Fuse are used in circuit for	
, O-	:,0	.4
	Equipment Safety	
	Human Safety	(5)
	None of Above	
	a & b are correct	
10	Answer: d) a & b are correct	1M
	Explanation: The primary use of an electric fuse is to protect	
• 0	electrical equipment from excessive current and to prevent	
	short circuits or mismatched loads. Apart from protecting	
SIL	equipment, they are also used as safety measures to prevent	cill
	any safety hazards to humans.	*100
37		20.

ciOlli.		
*(0)	Fuse is an Electronic Component used for	*(0)
	a) current limiting	20,
	b) power limiting	
	c) a & b are correct	
11	d) none of above	1M
	Answer: a) current limiting	
SI	Explanation:a fuse is defined as an electrical safety device	S
310	that provides over-current protection to the functional	
	electrical circuit.	
	The melting point of Fuse element is	
	a) low	
	b) medium	
C12	c) high d) all are correct	6
XIO-	Answer: a) low	1M
20.		20.
	Explanation: A fuse is a piece of wire made of a material with	
	a very low melting point, which means it melts and breaks when the temperature rises above its melting point.	
	Fuse wire is always connected with	*
e.C.I.	a) live	cs?
ailos	b) neutral	x Co
201	c) earth	2
	d) all are correct	
13	Answer: a) live	1M
	Explanation:The fuse wire is always connected in the live	
	wire of the circuit because if the fuse is put in the neutral	
SIN.	wire, then due to excessive flow of current when the fuse	6
**(0)	burns, current stops flowing in the circuit, but the appliance	x C
	remains connected to the high potential point of the supply	20,
		0.

**(63)	through the live wire.	1100
70.	Digital multimeter is used for	70-
	a) measuring a.c. and d.c. current, voltage and resistance	
	b) measuring a.c. current and voltage	
	c) measuring d.c. current and resistance	
.0	d) measuring a.c. voltage and resistance	
C 14	S I I	414
x\U	Answer: a) measuring a.c. and d.c. current, voltage and	1M
200	resistance Evaluation, Digital multimator is usually used for the	20.
4.	Explanation: Digital multimeter is usually used for the	
	measurement of a.c. current, voltage and resistance. It is also	
	used for the measurement of d.c. current, voltage and	
10	resistance as well over several range.	
	Current is converted to voltage	
-5	a) through a voltmeter	(5)
	b) through a resistance	
~~	c) through an ammeter	20.
	d) through a galvanometer	
15	Answer: b) through a resistance	
	Explanation: Current is passed through a low shunt resistance	1M
10	and is converted to voltage. A.C. quantities are converted to	
	D.C. through various rectifiers and filter circuits. Voltmeter	
-5	and ammeter are used for voltage and current measurement	(5)
aji Co	respectively.	
~~	Quantities are digitised using	10.
	a) D/A converter	
	b) oscillator	
	c) amplifier	
16	d) A/D converter	1M +.
	Answer: d) A/D converter	
5	Explanation: Quantities such as current, voltage and	.(5)
	resistance are digitised by making use of an A/D converter.	
~`()"	Tesistumeetre argustes and a second of the s	2.0

69,	They are then displayed on the screen by making use of a	05
	digital display.	
.00	Analogalisation	00
	Analog mulimeters require power supply.	
	a) True	
17 . 0	b) False	
17	Answer: b) False	1M
	Explanation: Analog multimeters are less affected by electric	
. (5)	noise and isolation problems. As a result analog multimeters	.05
	don't require a power supply.	
.00	Output of a digital multimeter is	100
	a) mechanical	
	b) optical	
. 0	c) electrical	
18	d) analog	
	Answer: c) Electrical	1M
	Explanation: Digital multimeter gives an electrical signal as	.05
ail Co	the output. A/D converter is employed for the conversion	
200	from analog to digital signal. This can be used for interfacing	200
	with external equipment.	
	Basic building blocks of digital multimeter are	
. 0	a) oscillator, amplifier	
	b) diode, op amp	•.
	c) rectifier, schmitt trigger	
.:.05	d) A/D, attenuator, counter	.:.05
	Answer: d) A/D, attenuator, counter	
19	Explanation: Usually dual slope integrating type ADC is	
	preferred in multimeter. It basically consists of several A/D	1M
	converters, counter circuits and an attenuation circuit.	
. 0		
(0)		• •
C.C.		G()
:(0)	::(03)	::03
		37,
Ť		•

	Resistance is measured using	105
	a) constant current source	
.00	b) constant voltage source	
	c) variable current source	
	d) variable voltage source	
20	Answer: a) constant current source	
		1M
	Explanation: Constant current source is used to measure	
::05	resistance in a digital multimeter. Standard known value of	::05
	current is passed through an unknown resistance and the	27
	drop in voltage across the resistance is measured.	
	A.C. voltages are measured using	
	a) oscillators and op amps	
.0.	b) rectifiers and filters	
	c) resistor and capacitor	
C 521	d) inductor and resistor	5
21		1M
00	Answer: b) rectifiers and filters	20
	Explanation: Rectifiers and filter circuits with various	
	configurations are employed for measuring A.C. voltages. A.C.	
	is converted to D.C. and is applied to the A/D converter.	
	Which material is commonly used for making the arch of	
	circuit breakers?	
	a) Copper	
	b) Tungsten	
W.	c) Aluminium	
22	d) Copper tungsten alloy	
	Answer: d) Copper tungsten alloy	1M
. 0	Explanation: Copper tungsten alloy is commonly used for	
0)	making the arch of circuit breakers. Tungsten has an	
	advantage that it has a very high level temperature	G()
*(0)	resistance, whereas copper provides an excellent conducting	,: C
	property.	200

	The full form of ELCB is	::05
	a) Earth Line Circuit Breaker	
	b) Earth Line Current Breaker	
Ť	c) Earth Leakage Current Breaker	
23	d) Earth Leakage Circuit Breaker	
• (Answer: d) Earth Leakage Circuit Breaker	1M
S	Explanation:Full form of E.L.C.B is Earth Leakage Circuit	5
xiO3	Breaker. It directly detects current leakage and directs it to	410
3.	the earth from the circuit and breaks the circuit.	200
	The rated current of MCB is	
	a) Less than 10 A	
	b) Less than 100 A	
24	c) More than 100A	
	d) More than 200A	1M
. (5)	Answer: b) Less than 100 A	. (5)
10.00	Explanation: The rated current of MCB is less than 100A	100
	What is earthing?	
	a) connecting electrical machines to earth	
	b) providing a connection to the ground	
	c) connecting the electrical machines to source	
25	d) providing a source of current	C.S
ijos	Answer: a) connecting electrical machines to earth	1M
20	Explanation: Connecting electrical machines to the general	20,
	mass of the earth by making use of a conducting material with	
	very low resistance is known as earthing.	
	What is an earth electrode?	
	a) electrode that is connected to earth	
26	b) material used for earthing	
.:.05	c) electrode connected to the circuit	1M
	d) electrode which is connected to the mains	
2	Answer: b) material used for earthing	

.69,	Explanation: Electrode connected to the main is basically a	1 .05
	source of e.m.f. Conducting material that is used for	
.00	connecting electrical machinery to the earth is known as an	
	earth electrode.	
	Earth electrode provides	
. 0.	a) high resistance	
	b) medium resistance	
	c) low resistance	
27	d) very high resistance	.:.05
27	Answer: c) low resistance	1M
	Explanation: In the case of occurrence of any leakage currents	
	due to poor shielding of the apparatus, the earth electrode is	
	used to provide a very low resistance path from the electrical	
.0-	appliances to the earth.	
	How is the condition of an earth electrode measured?	
	a) by measuring the voltage	GIV.
*(0)	b) by measuring the current	× C
200	c) by measuring the power	20.0
20	d) by measuring resistance	
	Answer: d) by measuring resistance	1M
	Explanation: The resistance of the earth electrode is	
.0	measured in order to check whether it is in a good condition	
	or not.	
5	In a three phase system, the neutral is	(5)
	a) earthed	
0.0	b) connected to low voltage	0.0
	c) connected to high voltage	
	d) not connected	
29	Answer: a) earthed	1M
	Explanation: Earthing can be used to maintain a constant line	
	voltage in a three phase system. This is achieved by earthing	
.05	the neutral.	.05
W.		00
		•

	5	Earthing does not help in protecting the equipment.	1 .:.0
2		a) True	
3		b) False	9
	30	Answer: b) False	1M
		Explanation: Spike voltages occurring as a result of lightning	TIVI
	. 0	or any other fault can be dissipated to ground by earthing,	
		thus protecting the equipment.	
		After earthing, the different parts of an electrical machinery	
4	1,5,	are at	05
2		a) infinite potential	
3		b) intermediate potential	9
		c) zero potential	
	31	d) undefined potential	
	. 0	Answer: c) zero potential	
		Explanation: After earthing, the various parts of electrical	
	-(1)	machinery such as casing, armoring of cables, etc are at zero	
	1,5,	potential.	::05
2			
3		Connection of the various parts of a circuit to earth has a	400
		a) medium resistance	
	.0	b) high resistance	
	32	c) very high resistance	
		d) very low resistance	1M
	5	Answer: d) very low resistance	.:.05
		Explanation: Once an electrical apparatus is grounded, most	
2		of its components are at ground potential. When the different	400
		parts of electrical machinery are connected to the ground,	
		they possess very low resistance.	
	. 0	Specific resistance of soil is	
	.05	a) changes from soil to soil	
	33	b) is constant	
	(3)	c) depends on the circuit connected to it	1M
2		d) depends on the supply voltage	
200	1	Answer: a) changes from soil to soil	

.:.69	Explanation: Specific resistance depends on the nature and	.:.05
	properties of a material. Specific resistance is different for	
	various types of soils such as dry soil, rocky soil, wet soil, etc.	
	State true or false: Earthing helps prevent the risk of fire	
	hazards.	
3	a. TRUE	
34	b. FALSE	
ijos,	Answer: a) TRUE	1M
	Explanation: When the insulation fault arises, earthing helps	000
	prevent the risk of fire hazards.	
	Earthing helps to prevent	
×2	a. Water leakage	
	b. Current leakage	
25,	c. Storms	.:.05
35	d. Device upgrade	1M
	Answer: b) Current leakage	· Crim
	Explanation: It helps to prevent current leakage and avoid shock.	
	SHOCK.	
	Choose YES or NO: Electric appliances like iron boxes,	
::(05)	television, and refrigerator are connected to the earth wire	::05
	while operating.	200
	a. YES	
36	b. NO	
. 0	Answer: a) YES	1M
	Explanation: To safeguard all the equipment mentioned	• •
SIL	above, they are connected to the Earth while operating.	60
× C	ilos ilos	× C
		000
1		

.:(69)	Which among the following statement is true related to fuse?	
~~	a. Greater the current smaller is the time taken by the fuse to	900
	blow out.	
	b. Greater the current greater is the time taken by the fuse to	
. 0	blow out.	
07	c. The current is directly proportion to the blow out time of	
37	fuse.	
	d. Is dependent on the temperature and atmospheric	1M
	conditions	
	Answer: a) Greater the current smaller is the time taken by	200
	the fuse to blow out.	
	Explanation: The <i>time</i> required to <i>blow out</i> is <i>fuse</i> depends on	
	value of fault <i>current</i> , the <i>greater</i> the <i>current</i> ,	
-011	the <i>smaller</i> the <i>time</i> taken by the <i>fuse</i> to <i>blow out</i> .	
. (5)	For a current upto 10A which material is used as the fusing	1,05
	element?	
V.0.	400	200
	a. Copper	
	b. Silver	
38	c. Alloy of lead and tin	
	d. Zinc	1M
	Answer: c) Alloy of lead and tin	
. 45	. 65	. (5)
	Explanation: The fusing element for 10A current is <i>Lead and</i>	
V.O.	tin because it attracts more current.	200
	What is fusing factor?	
	What is rushing ructor.	
	a. The ratio of current rating of the fuse to the minimum	
39	fusing current.	
	b. The ratio of minimum fusing current to the current rating	1M
. ,5	of the fuse.	. (5)
	c. The ratio of maximum fusing current to the current rating	
V.O	C. The factor of maximum rusing current to the current	

collina		
:,(5)	of the fuse.	:,05
	d. The ratio of minimum fusing current to the voltage rating of	37,
	the fuse	
· ·	Answer: b) The ratio of minimum fusing current to the	
	current rating of the fuse.	
. 0.	Explanation: The fusing factor of a fuse is a measure of how	
	quickly a fuse will melt or "blow" when subjected to	
5	an overcurrent condition. The fusing factor is the ratio of the	5
	minimum fusing current and the current rating of the fuse	
V(0.	What should be the value of fusing factor?	100
	a. Equal to zero	
. 0.	b. Equal to one	
	c. Less than one	
40	d. More than one	1111
.:.05	Answer: d) more than one	1M
	Explanation:Fusing factor = minimum fusing current /	2
	current rating of fusing element. Its value is always more than	
· ·	1 one.	
.0-	Which is a type of solid state switch?	
	a) NPN Diode	
	b) Bipolar junction transistor	6
	c) DPDT(Double pole double throw) Switch	xiQ ³
	d) Push button Switch	200
41	Answer: b) Bipolar junction transistor	
	Explanation: Bipolar junction transistor is a type of solid state	1M
. 0.	switch. Theses switches have no moving parts and no physical	
0	contacts which is why they are called so. They are also called	
C.C.	as electronic switch.	
::(03	::(03)	::03
200		37,

::(03)	Earth resistance is dependent on	::05
	a) Depth of earth electrode in earth	2011
42	b) Size of earth electrode and earth wire	
	c) Temperature of soil surrounding the earth electrode	1M
	d) All of the above	
	Answer:d) All of the above	
	In case of HRC fuse a current carrying element is surrounding	
. 5	byto quench the arc.	: (5)
43	a) Oil	9
	b) Water	1M
	c) Quartz powder d) Sf6 gas	
*	U) Sio gas	
	Answer: c)Quartz powder	
5	The combination of fuse and switch is called as	S
	a) SFU	
44	b) FSU	.0.
	c) Both a and b	1M
	d) None of these	
*	Answer: c) Both a and b	
	In SFU the fuses are	
Sill	a) Stationary	S
45	b) Moving	*10
	c) Adjustable	1M
	Answer: a) Stationary	
	It is not necessary to shonge a seften triuming	
•	It is not necessary to change aafter tripping	
336	a) Fuse	•.<
40	b) MCB	1M
a di Co	c) None of the above	*(0)
200	Answer :b) MCB	37.

	CUIII			
.:.(0	,	A current flowing from live point o	f ac supply to earth is	.:.05
		called as current.		2
	4.7	a) Load		
•	47	b) Source	•	1M
		c) Leakage		
		Answer :c) leakage	.0	
	C)	is used for preventing electr	ic shocks.	Sil
XIC		a) MCB	<i>x</i> i0-	***
	48	b) MCCB	0	0.0
		c) ELCB		IM
		Answer : c) ELCB		
		MCB provides protection against _		
		MCD provides protection against_		
		a) Short circuit		
	49	b) Overload	6	5
i)	c) Earth fault		1M
0.0		d) All of the above	200	200
		A DAN CH L		
_		Answer : d) All of the above	ahout	
		a) 0.5 meter b) 1.0 meter c) 2.5 meter d) 5 meter	Mailcshinia	
		a) 0.5 meter		
	50	b) 1.0 meter		
	5500	c) 2.5 meter	(5)	1M
		d) 5 meter		1M
Mail		W.	W.	
		Answer: 2.5 meter		
	. (· · ·	. ? .	
	C		G()	S()
Majir	5	a Mailceanna	Mailcshinia	Maiicshi
20,7			2011	3,
				4

Mailcelin Mailcelin Thank You Mailcsin Mailcshinia Mailcshinia Mailcshinia Malicshir Mailcshinia Mailcshinia Mailcshinia Malicshir Mailcshinia Mailcshinia Mailcshinia Malicshir Malicshinia Mailcshinia Mailcshinia Mailcshir

Unit IV	Special purpose diodes and their applications Ma	rks - 12
S. N.		Marks
1.	Why is there a sudden increase in current in Zener diode?	
	a) Due to the rupture of ionic bonds	
C.	b) Due to rupture of covalent bonds	
	c) Due to viscosity	**
	d) Due to potential difference	20
	Answer: b. Due to rupture of covalent bonds	1M
	Explanation: The sudden increase in current in a Zener diode	
	is due to the rupture of the many covalent bonds present.	
.0	Therefore, the Zener diode should be connected in reverse	
dilli	bias.	
2.	What is the semiconductor diode used as?	
	a) Oscillator	a a
	b) Amplifier	400
	c) Rectifier	
	d) Modulator	1M
	Answer: c. Rectifier	1141
	Explanation: Semiconductor diode can be used as a rectifier.	
	The function of a rectifier is that it converts an alternating	
. (5)	current into direct current by allowing the current to pass	*
	through in one direction.	

Mailcshinia

Mailcshinia

Mailcshir

Majicshinia

3.	What is rectification?	.:.0
	a) Process of conversion of ac into dc	
(0)	b) Process of conversion of low ac into high ac	
	c) Process of conversion of dc into ac	
	d) Process of conversion of low dc into high dc	
.0-		
	Answer: a. Process of conversion of ac into dc	1M
S	Explanation: Rectification is the process of conversion of	S
×10°	alternating current into direct current. The conversion first	*102
0.0	powers to alternating current then use a transformer to	0.0
	change the voltage, and finally rectifies power back to direct	
	current.	
4	What is a Zener diode used as?	
4.	a) Oscillator	
	b) Regulator	
5	c) Rectifier	5
	d) Filter	
0.00	u) Thici	200
	Answer: b. Regulator	1M
	Explanation: Zener diode can be used as a voltage regulator.	
	They can also be used as shunt regulators to regulate the	
	voltage across small circuits. Zener diodes are always	
	operated in a reverse-biased condition.	
5.	Forward biasing of p-n junction offers infinite resistance.	(5)
	a) True	
	b) False	9
	Answer: b. False	
	Explanation: No, this is a false statement. Forward biasing of	1M
.0.	p-n junction offers low resistance. In the case of an ideal p-n	
	junction, the resistance offered is zero. So, forward biasing	
C(I)	does not offer any resistance.	
*(63)	<u> </u>	
20.		37.

6.	When a junction diode is reverse biased, what causes	.:.(
	current across the junction?	
(00	a) Diffusion of charges	400
	b) Nature of material	
	c) Drift of charges	
. 0	d) Both drift and diffusion of charges	
	Answer: c. Drift of charges	1M
	Explanation: The reverse current is mainly due to the drift of	
::(05)	charges. It is due to the carriers like holes and free electrons	.:.(
	passing through a square centimeter area that is	
	perpendicular to the direction of flow.	
7.	What can a p-n junction diode be used as?	
	a) Condenser	
	b) Regulator	
	c) Amplifier	
5	d) Rectifier	
000	Answer: d. Rectifier	1M
	Explanation: A junction diode can be used as a rectifier. The	
	rectifier converts alternating current into direct current.	
. 0.	During the positive half cycle, the diode is forward biased	
	and allows electric current through it.	
8.	In a PN junction with no external voltage, the electric field	
, C 5 si	between acceptor and donor ion is called a	,;(
	between deceptor and donor for is cancala.	20,0
a)	Peak	
b)	Barrier	
c)	Threshold	1M
d)	Path	
	Answer: (b) Barrier	
::65.	Evaluation in a niunction with no ovtendal valtage the	.:(0
	Explanation: In p-n junction with no external voltage, the	
	electric field between the acceptor and the donor ions is	
Ť	¥	₩

i Co	called a barrier.	1100
9.	In a PN junction the potential barrier is due to the charges	00
	on either side of the junction, these charges are	
	a) Majority carriers	
	b) Minority carriers	
die	c) Both (a) and (b)	
5	d) Fixed donor and accepter ions	(5)
	Answer: (d) Fixed donor and accepter ions	1M
	Explanation:The potential barrier created throughout the P-	
·	N junction is due to the diffusion of electrons and holes, and	
	this potential barrier normally does not allow charging flow	
	through the junction.	
S	The capacitance of a reverse-biased PN junction	S
	a) Increases as reverse bias is increased	XIO 3
War.	b) Decreases as reverse bias is increased	War.
	c) Increases as reverse bias is decreased	
	d) Is significantly low	
10.		1M
	Answer: (c) Increases as reverse bias is decreased	
5	Explanation: When reverse bias decreases, the depletion	6
	region width "d" decreases. As "d" increases, the capacitance	
	increases.	
11.	For a PN junction diode, the current in reverse bias maybe	
	a) Few milliamperes	
	b) Between 0.2 A and 15 Å	
		1M
5	c) Few amperes d) Few micro or nano amperes	
	Answer: (d) Few micro or nano amperes	
(10	Answer: juji rew inici o or nano amperes	0.0
*	▼	▼

.:.69	Explanation:n a reverse-biased diode, the current is very	.:.0
	low, typically in the nanoampere (nA) to picoampere (pA)	
	range. This is because the reverse bias causes the depletion	
	region to widen, making it difficult for current to flow across	
	the diode. The diode acts as an insulator in the reverse bias	
	condition.	
12.	When PN junction is in forward bias, by increasing the	
. (5)	battery voltage	.05
a)	Circuit resistance increases	
		400
UJ	Current through P_N junction increases	
(c)	Current through P_N junction decreases	
d)	None of the above	1M
	Answer: (b) Current through P_N junction increases	
c C C C C C C C C C C C C C C C C C C C	Explanation:When the voltage increases up to	c C
× Co	around measurable current starts to flow through the diode	*(0)
0.	in the forward direction. As the voltage moves a little above,	0.0
	the current through the diode rises rapidly.	
13.	When a PN junction is reverse biased	
a)	Holes and electrons tend to concentrate towards the junction	
	The barrier tends to break down	GiO.
c)	Holes and electrons tend to move away from the junction	.:05
d)	None of these	2011
	Answer: (c) Holes and electrons tend to move away from the	
	junction	1M
.0.	Explanation: Reverse bias applied to a p-n junction	
	diode raises the potential barrier because p-type material	
5	connected to the negative terminal and pulls the holes away	(5)
ai Co	from the junction. Similarly, n-type material connected to the	×10°
War.	positive terminal and pulls the electrons	War
*	▼	▼

14.	A PN junction	2/2
a)	Has low resistance in forward as well as reverse directions	Joseph March
b)	Has high resistance in forward as well as reverse directions	
c)	Conducts in the forward direction only	
. (d)	Conducts in the reverse direction only	
dille	Answer: (c) Conducts in the forward direction only	1M
::(5)	Explanation:Diode is a combination of p-type and n-type	1141
	semiconductors. This combination creates a potential	
	barrier at the junction. Therefore, the external power source	
	must overcome the potential barrier to conduct. In the	
	forward bias, the diode conducts and in the reverse bias, it	
	will not conduct.	
15.	A PN junction is said to be forward-biased when	
a)	The positive terminal of the battery is connected to P-side	.:C
0	and the negative side to the N-side	3.
b)	Junction is earthed	
с)	N-side is connected directly to the p-side	
d)	The positive terminal of the battery is connected to N-side	
	and the negative side to the P-side.	1M
	Answer: (a) The positive terminal of the battery is connected	
ics	to P-side and the negative side to the N-side	4
201	Explanation:In forward biasing, the p-type is connected with	Syl.
	the positive terminal and the n-type is connected with	
	negative terminal of the battery.	
16.	PN Junction is also called	
	diode	
	transistor	1M.
	triode	

d)	Answer: a) Diode	Mailes
	Explanation:Pn junctions are called diodes because they	
	allow the flow of current in one direction and not in another,	
. 0	and also because they are two terminals or distinct	
	electrodes, which are anode and cathode.	
C-17.	The P-type region of diode is called	60
× C		XIO-
a)	cathode	20.
b)	anode	
c)	grid	
(d)	both a & b	
5	Answer: b) anode	1M
NO TO THE PROPERTY OF THE PROP	Explanation: The anode is a positive terminal in a forward-	
	biased p-n junction diode (that p-type is linked to the	
	positive terminal and n-type is connected to the negative).	
	On this type of junction, the cathode terminal is negative. The	
. 0	anode is a positively charged electrode or wire that charges the p-n junction with holes.	
:05		
18.	The N-type of region of PN Junction diode is called	S()
منادة	Cathode. True / False	*(0)
	Answer: True	70,
	Explanation:We call the lead affixed to the N-type semiconductor the cathode. Therefore, the cathode is the	1M
	semiconductor the cathode. Therefore, the cathode is the negative side of a diode.	
19.	When a diode isbias then it shows the conventional	
	direction of current.	
3)	forward	1M
	reverse	
	Teverse	

:(0)	Answer:a) forward	::05
27	Explanation:The Conventional flow of current is from P side	37,
	to N side. As in a forward bias p-n junction the electrons	
	move from n side to p side, hence causing the conventional	
	current flow from P to N. *Conventional current flow is	
	always opposite to the direction of electrons flow.	
20.	How can we identify the positive and negative leads of a	
	diode?	.05
a)	colour coding	
b)	colour band	
с)	both a & b	
		1M
a)	none is correct	
5	Answer: c) both a & b	S
	Explanation:We can identify the positive and negative leads	
00	of a diode by using colour coding colour band	00
21.	PN Junction diode is adevice.	
	,	
a)	one way	
b)	two way	
c)	double way	5
(c)	b & c are correct	
a)	b & c are correct	0.0
	Answer: a) one way	1M
	Explanation:A diode is often referred to as a one-way valve	
. 0	because it allows current to flow in only one direction. When	
	a diode is forward-biased, it conducts current, but when it is	
Sili	reverse-biased, it effectively blocks the flow of current.	ci()
	*10	× C
0,		000

22.	The barrier potential of germanium is .3v. True / False Answer: True Explanation:Germanium (Ge) has a potential barrier of 0.3 eV	1M
b)	The barrier potential of silicon is .3v .7v .5v .4v Answer: b) 0.7 v	1M
24. a) b)	Explanation:Silicon (Si) has a potential barrier of 0.7 eV The reverse saturation (Is) or maximum (Io) current during reverse bias of a PN junction diode depends on temperature doping level	Maileshi
. 0	physical size of junction all are correct Answer: d)all are correct Explanation:The reverse saturation (Is) or maximum (Io) current during reverse bias of a PN junction diode depends on temperature, doping level, physical size of junction	1M
	How to protect a diode from increasing voltages of breakdown level? Filter capacitor Limiting resistor	1M

	Zener diode None is correct	Sil
	Answer: b) Limiting resistor	.(),
	Explanation: There is a series resistor connected to the	
.0.	circuit in order to limit the current into the diode. It is	
	connected to the positive terminal of the d.c. It works in such	
6	a way the reverse-biased can also work in breakdown	
	conditions.	
26.	Zener diodes are also known as	
	a) Voltage regulators	
	b) Forward bias diode	
.0	c) Breakdown diode	
0)	d) None of the mentioned	
		1M
::(05)	Answer: c) Breakdown diode	
	Explanation: Zener diodes are used as voltage regulators but	377
	they aren't called voltage regulators. They are called	
	breakdown diodes since they operate in breakdown region.	, and the second
	breakdown drodes since they operate in breakdown region.	
27.	Which of the following is true about the resistance of a Zener	
	diode?	
C	a) It has an incremental resistance	
*(0)	b) It has dynamic resistance	,:(0
	c) The value of the resistance is the inverse of the slope of the	20,00
	i-v characteristics of the Zener diode	
	d) All of the mentioned	1M
.0-	Answer: d) All of the mentioned	
S	Explanation: All of the statements are true for the resistance	
*/0	of the zener diode.	wil.
3.		20.
(),		(1)

28.	Zener diode is designed to specifically work in which region	105
	without getting damaged?	
9	a) Active region	000
	b) Breakdown region	
	c) Forward bias	
	d) Reverse bias	
S	Answer: b) Breakdown region	1M
	Explanation: The Zener diode is a specifically designed diode	il vi
20.0	to operate in the breakdown region without getting	3.0
	damaged. Because of this characteristic, it can be used as a	
	constant-voltage device.	
29.	What is the level of doping in Zener Diode?	
.:.05	a) Lightly Doped	.:.05
	b) Heavily Doped	
9	c) Moderately Doped	000
	d) No doping	
	Answer: b) Heavily Doped Explanation: A Zener diode is heavily doped so that the	1M
. (5)	breakdown voltage occurs at a lower voltage. If it were	. (5)
	lightly/moderately doped, it would breakdown at a	
100	comparatively high voltage and, thus, would not be able to	1000
	serve its purpose.	
30.	When the reverse voltage across the Zener diode is increased	
	a) The value of saturation current increases	
	b) No effect	1M
,:(03)	c) The value of cut-off potential increases	:(0)
200	d) The value of cut-off potential decreases	
		41,

COLL		- GN
Maji Co	Answer: c) The value of cut-off potential increases	Majiros
	Explanation: As the frequency of the incident radiation	
	increases, the kinetic energies of the emitted electron are	
	higher and therefore require more repulsive force to be	
	applied to stop them.	
5	The value of saturation current increases, as the intensity of	5
	the incident radiation, increases.	
	The value of cut-off potential decreases, as the frequency	200
	decreases.	
31.	Zener Diode is mostly used as	
. 0	a) Half-wave rectifier	
	b) Full-wave rectifier	
	c) Voltage Regulator	
.:.05	d) LED	.:.05
	Answer: c) Voltage Regulator	1M
	Explanation: The Zener diode, once in the breakdown region,	
	keeps the voltage in the circuit to which it is connected as	
	constant. Thus it is widely used as a voltage regulator.	
32.	Which of the following is the correct symbol for the zener	
	diode?	
6	cs ¹	5
		XIO T
0.		0.0.
	a) O	1M
	b)	
. (5)	(48)	(5)
	c)	
V.0.		10.
*		

GOIL		- GN
mail Co	d) Answer: d	Majilos
Mailcshinig	Explanation: The following figure is the correct symbol for the Zener diode. The following figure is the symbol of a normal p-n junction diode.	Maileshi
Silinio	——————————————————————————————————————	Sillsill
33.	In normal junctions, the breakdown is same as Zener breakdown.	W.o.
Mailcshinia	a) True b) False Answer: b) False Explanation: In normal p-n unction diodes, the breakdown takes place by avalanche breakdown which is different than the Zener breakdown. Zener diode is specifically made to operate in that region.	1M
34.	The depletion region of the Zener diode is a) Thick b) Normal c) Very Thin d) Very thick	1M 5

::(5)	Answer: c) Very Thin	.:.0
	Explanation: Zener diode is fabricated by heavily doping	27
	both p- and n-sides of the junction, which results in an	
	extremely thin depletion region.	
35.	A light emitting diode is	
	a) Heavily doped	
	b) Lightly doped	
5	c) Intrinsic semiconductor	. (5)
	d) Zener diode	
.0.	V.O.	
	Answer: a) Heavily doped	1M
	Explanation: A light emitting diode, LED, is heavily doped. It	
. 0	works under forward biased conditions. When the electrons	
	recombine with holes, the energy released in the form of	
	photons causes the production of light.	
20	THE COLOR OF THE C	5
36.	Which of the following materials can be used to produce	
	infrared LED?	
	a) Si b) GaAs	
	c) CdS	
.0-	d) PbS	
:(0)		1M
C)		G ()
	Answer: b) GaAs	*:03
20,	Explanation: GaAs has an energy band gap of 1.4 eV. It can be	37.
	used to produce infrared LED. Various other combinations	
	can be used to produce LED of different colors.	
37.	The reverse breakdown voltage of LED is very low.	
10	a) True	
	b) False	
(5)	Answer: a) True	1M
	Explanation: The reverse breakdown voltages of LEDs are	
.0.0	very low, typically around 5 V. So, if access voltage is	0.0

x Co	provided, they will get fused.	*100
38.	What should be the band gap of the semiconductors to be	0.
	used as LED?	
	a) 0.5 eV	
	b) 1 eV	
	c) 1.5 eV	
dilly	d) 1.8 eV	
.:.65	·· CS	1M
	Answer: d) 1.8 eV	
		600
	Explanation: Semiconductors with band gap close to 1.8 eV	
	are ideal materials for LED. They are made with	
.0	semiconductors like GaAs, GaAsP etc.	
39.	What should be the biasing of the LED?	
5	a) Forward bias	65
	b) Reverse bias	
	c) Forward bias than Reverse bias	200
	d) No biasing required	
	Answer: a) Forward bias Explanation: The LED works when the p-n junction is	1M
	forward biased i.e., the p-side is connected to the positive	. (5)
	terminal and n-side to the negative terminal.	
· Cio		400
40.	Which of the following would have highest wavelength?	
Maileshinia	A B C D	1M

.:(5)	a) A	.:.0
	b) B	
	c) C	
	d) D	
.0.	Answer: a) A	
	Explanation: In the I-V characteristic of an LED, as the	
	frequency increases, the voltage required to achieve the	X
	same current increases. Hence A would have the highest	20.0
	wavelength.	
41.	Increase in the forward current always increases the	
41.	intensity of an LED.	
	a) True	
	b) False	
5	b) raise	
ail Co.		1M
~~~	Answer: b) False	
	Explanation: As the forward current is increased for an LED,	
	the intensity of the light increases up to a certain maximum	
	value. After that, the intensity starts decreasing.	
42.	Which process of the Electron-hole pair is responsible for	
	emitting of light?	
. (5)	a) Generation	. (
	b) Movement	
100	c) Recombination	0.0
	d) Diffusion	
		1M
.0	Answer: c) Recombination	
	Explanation: When the recombination of electrons with	
	holes takes place, the energy is released in the form of	
	photon. This photon is responsible for the emission of light.	4
		20.

		- CO
a i Co	ilos	ilos
43.	Which of the following is not a characteristic of LED?	0.0
	a) Fast action	
	b) High Warm-up time	
	c) Low operational voltage	
	d) Long life	
		1M
5	Answer: b) High Warm-up time	5
	Explanation: The warm-up time required should be lower so	
	that the lighting action can take place faster. This is one of	.0.0
	the advantages LED have over incandescent lamps.	
44.	LEDs work on the principle of	
.0		
a)	Electromagnetic induction	
b)	Conduction	S
c)	Electroluminescence	XIO T
d)	Induction	
	Answer: c) Electroluminescence	1M
	Explanation: Electroluminescence is an electrical and optical	
.0.	phenomenon where material emits light when electricity	
in	flows through it.	
45.	State true or false: High warm-up time is needed for LEDs.	(5)
a)	TRUE	000
b)	FALSE	
	Answer: b) FALSE	1M
. O.	Explanation: little or no warm-up time is needed for light	
	emitting diodes.	
-5		5
46.	Aluminium alloys are used to obtainlight.	1M
4.0	V.O. V.O.	

CUII		c S
<u>;</u>	a) Red	*(0)
3	b) Orange	200
	c) Yellow	
	d) All of the above	
. 2	Answer: d) All of the above	
	Explanation: Aluminium alloys are used to obtain yellow,	
S	orange, and red colour lights.	: (5)
47.	Why is there a sudden increase in current in Zener diode	
100	a) Due to the wenture of ionic hands	.00
	a) Due to the rupture of ionic bonds b) Due to rupture of covalent bonds	
	<ul><li>b) Due to rupture of covalent bonds</li><li>c) Due to viscosity</li></ul>	
. 0	d) Due to potential difference	
0	Answer: b) Due to rupture of covalent bonds	•
C.C.I.		1M
×103	Explanation: The sudden increase in current in a Zener diode	2.05
20	is due to the rupture of the many covalent bonds present.	20,0
	Therefore, the Zener diode should be connected in reverse	
	bias.	
48.	In a pure semiconductor crystal, if current flows due to	
	breakage of crystal bonds, then what is the semiconductor is	
(5)	called?	. (5)
V.0.	a) Acceptor	400
	b) Donor	
	c) Intrinsic semiconductor d) Extrinsic semiconductor	1M
. 2	Answer: c) Intrinsic semiconductor	1101
0	Answer: cy intrinsic scinicolductor	
	Explanation: Pure semiconductors are called intrinsic	
ico	semiconductors. The number of electrons in the conduction	:(0)
37	band will be equal to the number of holes in the valence	97
4/-	band. Intrinsic semiconductors are also called undoped and	

::(5)	i-type semiconductors	::05
49.	In a p-type semiconductor, germanium is doped with which	
	of the following?	
	a) Gallium	
	b) Copper	
	c) Phosphorous	
	d) Nitrogen Answer: a) Gallium	
900	Allswei aj daliidii	1M
	Explanation: Substances such as gallium, boron, and	
	aluminum are all trivalent atoms. These are called acceptor	
.0	impurities and they produce p-type semiconductors.	
	Therefore, germanium is doped with gallium in a p-type	
C.C.	semiconductor	ci()
50.	What are the majority charge carriers in P-type	×
0	semiconductors?	200
(),		
	a) Electrons	
	b) Holes	
	c) Negative Ions	
	d) Positive Ions Answer: b) Holes	
5	Allswer: by Holes	1M
	Explanation: Holes are the majority charge carriers in P-type	
~~~	semiconductors. These holes are actually electron vacancies	200
	that contain positive charge. The holes are responsible for	
	the conduction in p-type semiconductors.	×
	Miliah afah afah afallawia 11 da ara	
5.1	Which of the following is operated in forward bias?	
	a) LED	.:.05
	o) Zener diode	1M
	c) Photodiode	
· ·		VITE

COMME		
d)	Solar cell	(
	Answer: a) LED	97
	Explanation: A light-emitting diode (LED) converts electric	
	energy into light energy. A LED is a heavily doped p-n	
	junction which under forward bias emits spontaneous	
.0	radiation. The semiconductor used for the fabrication of	
	visible LEDs must at least have a bandgap of 1.8 eV.	
52.	In a shunt capacitor filter, the mechanism that helps the	÷. C
	removal of ripples is	O.
a)	The current passing through the capacitor	
b)	The property of capacitor to store electrical energy	
c)	The voltage variations produced by shunting the capacitor	
(d)	Uniform charge flow through the rectifier	
	Answer: b) The property of capacitor to store electrical	
S	energy	1M
	Evalonation, Eiltoning is from anoutly done by shunting the	1 IVI
0.0	Explanation: Filtering is frequently done by shunting the	20.0
	load with capacitor. It depends on the fact that a capacitor stores energy when conducting and delivers energy during	
	non-conduction. Throughout this process, the ripples are	
	eliminated.	
	emmateu.	
*(0)	The charge (q) lost by the capacitor during the discharge	
	time for shunt capacitor filter.	Syr
a)	IDC*T	
	IDC/T	
c)	IDC*2T	
(d)	IDC/2T	1M
chilly	Answer: a) IDC*T	
::(5)	Explanation: The "T" is the total non-conducting time of	.:.(
	capacitor. The charge per unit time will give the current flow.	20,11
*	▼	*

chilli		- S
*103	il Co	il Co
53.	Which of the following are true about capacitor filter?	00.
a) It is also called as capacitor output filter	
b) It is electrolytic	
C) It is connected in parallel to load	
d) It helps in storing the magnetic energy	111
cli	Answer: b) It is electrolytic	1M
×VC3	Explanation: The rectifier may be full wave or half wave. The	*(0)
20.	capacitors are usually electrolytic even though they are large	000
	in size	
54.	The rms ripple voltage (Vrms) of a shunt filter is	
) IDC/2√3) IDC2√3 	
) IDC/ $\sqrt{3}$	
) IDC√3	::(0)
	Answer: a) IDC/ $2\sqrt{3}$	
		TM
	Explanation: The ripple waveform will be triangular in	
	nature. The rms value of this wave is independent of slopes or lengths of straight lines. It depends only on the peak	
	value.	
C 55.	What is the effect of an inductor filter on a multi frequency	5
	signal?	
a) Dampens the AC signal	
b) Dampens the DC signal	•
c	* *	
2 ^d) To change the current	1M
	Answer: a) Dampens the AC signal	
	Explanation: Presence of inductor usually dampens the AC	C
ijos	signal. Due to self-induction induces opposing EMF or	
20.	changes in the current.	

		- sn
io	il Co	Nilo 3
56.	The inductor filter gives a smooth output because	100
a) It offers infinite resistance to ac components	
b) It offers infinite resistance to dc components	
C) Pulsating dc signal is allowed	
d	l) The ac signal is amplified	*.4
	Answer: a) It offers infinite resistance to ac components	
:.(5)	Eurlanation The industry does not allow the Agamman and	1M
	Explanation: The inductor does not allow the ac components	
600	to pass through the filter. The main purpose of using an	
	inductor filter is to avoid the ripples. By using this property, the inductor offers an infinite resistance to ac components	
	-	
. 0.	and gives a smooth output	
57.	Which of the following can be a source of supply in dc power	• • •
C(I)	supplies?	
::05	a) Battery	::05
	b) Dry cell	
	c) Full wave rectifier	
	d) All of the mentioned	
		1M
.0-	Answer: d) All of the mentioned	
	Explanation: Source of supply will be a battery, dry cell or	
6	full wave rectifier etc.	ci C
ail C3	*10	*102
0.		0.7
58.	Which of the application's filters used for?	
	a) Reducing ripples	
	b) Increasing ripples	
.0-	c) Increasing phase change	
	d) Increasing amplitude	1M
5	cs)	
		×10°
20.	Answer: a) Reducing ripples	3.
	Explanation: Ripples are ac components and filters are used	

.:.09,	for eliminating ac components from a signal.	.:.05
59.	Which of the following represent a change of output voltage	•
	when load current is increased?	
:0-	a) Line regulation	
0)	b) Load regulation	• • •
	c) Current regulation	
ics	d) Voltage regulation	::05
		1M
	Answer: b) Load regulation	
	Answer by Load regulation	
	Explanation: Load regulation is the process of fractional	
.0-	change of output voltage when load current is increased	
	from zero to maximum value.	
		6
60.	Why zener diodes are provided in dc supply?	xiQ3
0.0	a) For forward conduction	20.0
	b) For reverse conduction	
	c) For reference voltage	
	d) For increasing amplitude	
.0.		1M
	Answer: c) For reference voltage	
6	S	6
dico	Explanation: Zener diodes in dc power supplies are used for	will be
0.0	providing a reference voltage used for comparison.	200
	Chability of autuut valtage is autivaly depended on	
61.	Stability of output voltage is entirely depended on	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	a) Stability of gapon diods	
	b) Stability of zener diode	1M
5	c) Quality of wires	5
i	d) Capacitor values	
0		0.0

.:(0)	Answer: b) Stability of zener diode	::05
	Explanation: Stability of zener diodes used is an important	
	factor in determining the stability of output voltage in dc	
	power supply.	
62.	Which of the following are not the standard value of Zener	
	diodes?	
	a) 5.1 V	
. (5)	b) 5.6 V	. (5)
	c) 5.8V	
W.O.	d) 6.2V	000
		1M
	Answer: c) 5.8V	
.0	Evaluation Standard values of general larges are E 110	
	Explanation: Standard values of zener voltages are 5.1V, 5.6V, 6.2V and 9.1V etc.	
5	5.6V, 6.2V and 9.1V etc.	65
63	Which of the following can be used in series with a Zener	
	diode so that combination has almost zero temperature	0.
	coefficient?	
	a) Diode	
	b) Resistor	
· (0-	c) Transistor	
	d) MOSFET	
5	(5)	(5)
21103	Answer: a) Diode	
0.0	Answer a proue	1M
	Explanation: If a Zener diode of TC of about -2mV is	
	connected with a forward diode (which has a TC of about	
	+2mV) in series, the combination can be used to obtain a	
	very low (close to zero) TC.	• •
	:.C5'	
100		100

64 is used for critical loads where temporary power failure can cause a great deal of inconvenience. a) SMPS b) UPS c) MPS) ·
a) SMPS b) UPS	
b) UPS	
c) MPS	
d) RCCB	
Answer: b) UPS	
Explanation: Uninterruptible Power Supply is used where	
loads where temporary power failure can cause a great deal of inconvenience.	
of inconvenience.	
65is used in the rotating type UPS system to supply the	
mains.	4
a) DC motor	
b) Self excited DC generator	
c) Alternator	
d) Battery bank	
1M	
Answer: c) Alternator	
Explanation: When the supply is gone, the diesel engine is	
started, which runs the alternator and the alternator	
supplies power to the mains. Non-rotating type UPS are not	
used anymore.	
66 Static UPS requires	
a) only rectifier	
b) only inverter	
c) both inverter and rectifier	
d) none of the mentioned 1M	4
Answer: c) both inverter and rectifier Explanation, Postifier to converter the defree the bettery to	
Explanation: Rectifier to converter the dc from the battery to	

*(0)	ac. Inverter to charge the battery from mains.	*iCo
67	Usually batteries are used in the UPS systems.	0
	a) NC	
	b) Li-On	
. 0	c) Lead acid	
	d) All of the mentioned	
		1M
ijos	Answer: c) Lead acid	(05
	Explanation: Lead acid batteries are cheaper and have	2017
	certain advantages over the other types. NC batteries would	
	however be the best, but are three to four times more	
	expensive than Lead Acid.	
67	What is the expansion of UPS?	
	a) Uninterrupted Power System	
. (5)		.05
	b) Uninterrupted Power Supply	
	c) Uninterrupted Power Solution	
	d) Uninterrupted Power Section	1M
	Answer: Uninterrupted Power Supply	
	Explanation: The full form of UPS is Uninterrupted Power	
. (5)	Supply	.(5)
68	Which electrical / electronic devicerequires ups?	3
	a) Air conditioner	
	b) Micro wave oven	
.0	c) Computer	1M
	d) Television	
:.05	Answer: Computer	(5)
	· · · · · · · · · · · · · · · · · · ·	
		•

::(5)	Explanation: Computer is required UPS for back up.	
		.00
69	What is the number of capacitors and inductors used in a CLC	
	filter?	
. 0	a) 1, 2 respectively	
07	b) 2, 1 respectively	
	c) 1, 1 respectively	
	d) 2, 2 respectively	.:.05
		-1M
	Answer: b) 2, 1 respectively	C. C.
	Explanation: A very smooth output can be obtained by a filter	
	consisting of one inductor and two capacitors connected	
.0	across each other. They are arranged in the form of letter 'pi'.	
07	So, these are also called as pi filters.	
	50, these are also taned as printers.	
70	Major part of the filtering is done by the first capacitor in a	:.03
	CLC filter because	
	a) The capacitor offers a very low reactance to the ripple	
	frequency	
	b) The capacitor offers a very high reactance to the ripple	
.0	frequency	
07	c) The inductor offers a very low reactance to the ripple	
	frequency	GC T
	d) The inductor offers a very high reactance to the ripple	::05
	frequency	-1M
		The state of the s
	Answer: a) The capacitor offers a very low reactance to the	
	ripple frequency	
.0	Explanation: The CLC filters are used when high voltage and	
-107	low ripple frequency is needed than L section filters. The	
C	capacitor in a CLC filter offers very low reactance to the	cs.
	ripple frequency. So, maximum of the filtering is done by the	::05
	first capacitor across the L section part.	20,
	III'st capacitui aciuss the a section part.	
¥		

70	The inductor is placed in the L section filter because	· · · · · ·)`
	a) It offers zero resistance to DC component		
Wo.	b) It offers infinite resistance to DC component	400	
	c) It bypasses the DC component		
	d) It bypasses the AC component		
.0	.0		
	Answer: a) It offers zero resistance to DC component	1M	
C)	Explanation: The inductor offers high reactance to ac	C	
::03	component and zero resistance to dc component. So, it	200	,
20	blocks the ac component which cannot be bypassed by the	0,000	
	capacitors.		
71	In practice the output from the diode rectifier has		
.0.	a) AC component only		
	b) DC component only		
5	c) AC + DC component	C	
X	d) None of the mentioned	*10-	
20.		1M	
	Answer: c) AC + DC component		
	Explanation: The output contents along with the DC		
	components the AC harmonics which does no useful work &		
	reduces the efficiency.		
	Choose the correct statement		
78	a) The AC component in the output of rectifier does the	C	
	useful work		
	b) The AC component in the output of rectifier increases the	V.0.	
	efficiency of the system		
	c) The AC component in the output of rectifier causes ohmic		
	losses	1M	
	d) The AC component in the output of rectifier does not affect		٠. ﴿
	the operation		
(2)		())`
Co	Answer: c) The AC component in the output of rectifier		

causes ohmic losses Explanation: A rectifier is used to convert AC to DC. Lower the AC (Non-DC) components in the output lower are the ohmic losses. An L filter is connected	
the AC (Non-DC) components in the output lower are the ohmic losses. An L filter is connected	0
An L filter is connected a) in series b) in parallel c) in both series and parallel d) none of the mentioned Answer: a) in series Explanation: Inductor (L) has a very important property that the current through it cannot change rapidly. We can make use of this property by connecting it in series. In case of an L filter connected with a rectifier in series with the load, it offers impedance to ac whereas resistance to dc respectively. a) high, high	,
An L filter is connected a) in series b) in parallel c) in both series and parallel d) none of the mentioned Answer: a) in series Explanation: Inductor (L) has a very important property that the current through it cannot change rapidly. We can make use of this property by connecting it in series. In case of an L filter connected with a rectifier in series with the load, it offers impedance to ac whereas resistance to dc respectively. a) high, high	
a) in series b) in parallel c) in both series and parallel d) none of the mentioned 1M Answer: a) in series Explanation: Inductor (L) has a very important property that the current through it cannot change rapidly. We can make use of this property by connecting it in series. In case of an L filter connected with a rectifier in series with the load, it offers impedance to ac whereas resistance to dc respectively. a) high, high	
a) in series b) in parallel c) in both series and parallel d) none of the mentioned Answer: a) in series Explanation: Inductor (L) has a very important property that the current through it cannot change rapidly. We can make use of this property by connecting it in series. In case of an L filter connected with a rectifier in series with the load, it offers impedance to ac whereas resistance to dc respectively. a) high, high	-
c) in both series and parallel d) none of the mentioned 1M Answer: a) in series Explanation: Inductor (L) has a very important property that the current through it cannot change rapidly. We can make use of this property by connecting it in series. In case of an L filter connected with a rectifier in series with the load, it offers impedance to ac whereas resistance to dc respectively. a) high, high	
d) none of the mentioned Answer: a) in series Explanation: Inductor (L) has a very important property that the current through it cannot change rapidly. We can make use of this property by connecting it in series. In case of an L filter connected with a rectifier in series with the load, it offers impedance to ac whereas resistance to dc respectively. a) high, high	
Answer: a) in series Explanation: Inductor (L) has a very important property that the current through it cannot change rapidly. We can make use of this property by connecting it in series. In case of an L filter connected with a rectifier in series with the load, it offers impedance to ac whereas resistance to dc respectively. a) high, high	(5)
Explanation: Inductor (L) has a very important property that the current through it cannot change rapidly. We can make use of this property by connecting it in series. In case of an L filter connected with a rectifier in series with the load, it offers impedance to ac whereas resistance to dc respectively. a) high, high	
Explanation: Inductor (L) has a very important property that the current through it cannot change rapidly. We can make use of this property by connecting it in series. In case of an L filter connected with a rectifier in series with the load, it offers impedance to ac whereas resistance to dc respectively. a) high, high	
Explanation: Inductor (L) has a very important property that the current through it cannot change rapidly. We can make use of this property by connecting it in series. In case of an L filter connected with a rectifier in series with the load, it offers impedance to ac whereas resistance to dc respectively. a) high, high	
the current through it cannot change rapidly. We can make use of this property by connecting it in series. In case of an L filter connected with a rectifier in series with the load, it offers impedance to ac whereas resistance to dc respectively. a) high, high	
In case of an L filter connected with a rectifier in series with the load, it offers impedance to ac whereas resistance to dc respectively. a) high, high	
In case of an L filter connected with a rectifier in series with the load, it offers impedance to ac whereas resistance to dc respectively. a) high, high	
the load, it offers impedance to ac whereas resistance to dc respectively. a) high, high	
resistance to dc respectively. a) high, high	(5)
a) high, high	,
b) high, low	
c) low, high	
d) low, low	• . 1
Answer: b)) high, low	(5)
Answer: b)) high, low	,
Explanation: It offers high impedance to AC such as the AC	
ripples do not pass through the load.	
In case of a C filter, the AC is not allowed to pass to the load	
81 by	
a) offering it high impedance	
b) offering it low impedance 1M	5
c) short circuiting the AC component	D
d) open circuiting the AC component	

		- CU
XIC3	xiC ³	100
	Answer: c) short circuiting the AC component	3.
	Explanation: AC ripples are not allowed to pass, by S.C the AC	
	ripples as the C is always connected in parallel with the load.	
	A capacitor filter or C filter can be used in a rectifier by	
82	connecting it	
	a) in parallel with the load	·· Co.
	b) in series with the load	
	c) in parallel with the supply	400
	d) in series with the supply	1M
		IN
.0.	Answer: a) in parallel with the load	
	Explanation: AC ripples are not allowed to pass, by S.C the AC	
5	ripples as the C is always connected in parallel with the load.	S
NO -	- Charles and a signature the helpethe	4.0
83	In a shunt capacitor filter, the mechanism that helps the	20.
	removal of ripples is a) The current passing through the capacitor	
	b) The property of capacitor to store electrical energy	
	c) The voltage variations produced by shunting the capacitor	
	d) Uniform charge flow through the rectifier	
	u) omnorm charge now an ough the recurrer	
. 5	. (5)	. (5)
	Answer: b) The property of capacitor to store electrical	
V.0.	energy	1M
	Explanation: Filtering is frequently done by shunting the	
	load with capacitor. It depends on the fact that a capacitor	
. 0.	stores energy when conducting and delivers energy during	
05	non-conduction. Throughout this process, the ripples are	
	eliminated.	
:.03	::(03)	:.03
20		25,

69	The cut-in point of a capacitor filter is	0
84	a) The instant at which the conduction starts	
00	b) The instant at which the conduction stops	.00
	c) The time after which the output is not filtered	
	d) The time during which the output is perfectly filtered	
.0		
	Answer: a) The instant at which the conduction starts	1M
5	Explanation: The capacitor charges when the diode is in ON	
XIV S	state and discharges during the OFF state of the diode. The	
	instant at which the conduction starts is called cut-in point.	1 0.0
	The instant at which the conduction stops is called cut-out	
	point.	
	The westifier surrent is a short duration pulses which says	
85	The rectifier current is a short duration pulses which cause the diode to act as a	
	a) Voltage regulator	
5	b) Mixer	
	c) Switch	
	d) Oscillator	
	u) oscillator	
		1M
	Answer: c) Switch	
	Explanation: The diode permits charge to flow in capacitor	
	when the transformer voltage exceeds the capacitor voltage.	
. (5)	It disconnects the power source when the transformer	. (
	voltage falls below that of a capacitor.	
100	The output waveform of CLC filter is superimposed by a	100
86	waveform referred to as	
	a) Square wave	
. 0.	b) Triangular wave	
	c) Saw tooth wave	435
	d) Sine wave	1M
.:.65		.:.0
·	¥	

Collins		and and
×iC ³	ics	ilos
	Answer: c) Saw tooth wave	200
	Explanation: Since the rectifier conducts current only in the	
	forward direction, any energy discharged by the capacitor	
	will flow into the load. This result in a DC voltage upon which	
	is superimposed a waveform referred to as a saw tooth wave.	
C-87	A PN junction has a thickness of the order	c/l
a	. 1 cm	dio
b	. 1 mm	400
c	. 10-6 m	
d	. 10-12 cm	
.0.	Answer: (c) 10-6 m	1M
	Evaluation, When B. type comigan ductor is mived with N	
6	Explanation: When P- type semiconductor is mixed with N - type semiconductor, PN - junction is formed. There is very	6
NO STATE OF THE PROPERTY OF TH	small region { which is in order of micro metre } . This region	NIO C
	is known as depletion region. so, the thickness of junction {	200
	depletion region } is in order of 10 – 6 m	
88	In the depletion region of an unbiased PN junction diode	
00	there are	
	. Only electrons	
a a		(5)
b	. Only holes . Both electrons and holes	
d	Answer: (d) Only fixed ions	1M
	A A	
	Explanation:Depletion region or depletion layer is a region	
	in a P-N junction diode where no mobile charge carriers are	
	present. Depletion layer acts like a barrier that opposes the	(5)
	flow of electrons from n-side and holes from p-side.	
.0.		100
*		

89	In Zener diode, the Zener breakdown takes place	:.(
	Below 6 V	Sill
	At 6 V	
c)	Above 6 V	
(d)	None of the above	1M
dille	Answer: a) Below 6 V	
.:.(5)	Explanation: Zener breakdown occurs where breakdown	.:.(
	voltage is below 6 V and Avalanche breakdown occurs for	
	other voltages.	
90	A Zener diode when biased correctly	
.0-	a) Never overheats	
	b) Has a constant voltage across it	
:,05	c) Acts as a fixed resistance	.:.0
War	d) Has a constant current passing through it	1M
	Answer: c) Has a constant voltage across it	
.0>	Explanation: When biased correctly, the Zener diode has a	
	constant voltage across it.	
91	Depletion region behaves as	:.0
a)	Semiconductor	Sil
b)	Insulator	
c)	Conductor	
d)	High resistance	1M
die	Answer: b) Insulator	
5	Explanation: In the depletion region, an electric field exists	
	that quickly sweeps out electron-hole pairs that may be	
W.O.	thermally generated and reduces the equilibrium	0.0

.:.69	concentration of the charge carriers to exceedingly low	.:.05
	levels. Under these circumstances. This region, called the	2
	depletion layer, behaves as an insulator.	.00
92	The advantages of a pi-flter is	
.0	a) low output voltage	
	b) low PIV	
× CS.	c) low ripple factor	*/0°5'
200	d) high voltage regulation	War.
	Answer: c) low ripple factor	1M
	Explanation: Due to the involvement of 2 capacitors in	
	addition with one inductor it provides improved filtering	
	action. This leads to decrement in ripple factor. A low ripple	
. (5)	factor means the ratio of current due to AC ripples and direct	. (5)
	Current is low.	
93	The basic purpose of flter at the output of a rectifer is to	100
93	a) minimize variations in ac input signal	
.0.	b) suppress harmonics in rectifed output	
	c) remove ripples from the rectifed output	
	d) stabilize dc output voltage	::(05)
(S)	Answer: c) remove ripples from the rectifed output	1M
	Explanation: Rectifier is an electrical device that converts AC	
	into DC by using one or more p-n junction diodes. But the	
. 0.	output of rectifiers is pulsating (means contains both AC	
	component and DC component). Hence, to remove all the AC	
	components we use filters.	
X	ilos ilos	*103

65	What is correct about the ripple factor of LC filter?	(
94	Increases with the load current	
a)		9
b)	increases with the load resistance remains constant with the load current	
(c)	has the lowest value	
. (2)	Answer: c) remains constant with the load current	1M
0)	Aniswerregrenams constant with the road current	
	Explanation: the ripple factor of LC flterremains constant	
::(05)	with the load current	3/0
		20,0
95	Commercial power supplies have voltage regulation	
A.	of 10%	
B.	of 15%	
C.	of 25%	
D.	within 1%	1M
.0.	answer: d) within 1%	V.O.
	Explanation: Commercial power supplies have voltage	
	regulation within 1%	
. 0	In an unregulated power supply, if load current increases,	
96	the output voltage	
*.()	Remains the same	.:.0
b)	Decreases	
	Increases	
d)	None of the above	
	answer: b)Decreases	1M
.0-	.0	
	Explanation: The DC voltage output is dependent on an	
	internal voltage reduction transformer and should be	
ijos	matched as closely as possible to the current required by the	-:(0
	load. Typically the output voltage will decrease as the	20,7
	current output to the load increases.	

69	Two similar 15 V Zeners are connected in series. What is the	(
97	regulated output voltage?	
		000
a)	15 V	
b)	5 V	
c)	30 V	
Od)	45 V	1M
	Answer: c) 30 V	
. (5)	Allswer: cj su v	٠. (
	Explanation: As voltage and watt rating is more useful in real	
	applications. Now if we connect two 15 volts of Zener diodes	000
	in series as above, then the total voltage will be 30 volts.	
	The voltage regulator output impedance is	
98		
	Very small	
	Large	
c)	Infinite	
aj	None	
	Answer: a) Very small	100
	Explanation: A low impedance allows the source to deliver	1M
.0	current without significant voltage drop, ensuring the	
	voltage remains stable even when connected to different	
S	loads. This is important for many electrical and electronic	
21105	systems where a stable voltage is required for proper	wil.
	operation.	-0.v.
	A Zener diode utilisescharacteristic for voltage	
99	regulation	
	Forward	
62	Forward	1M
D)	Reverse	
c)	Both forward and reverse	20.

d) None of the above	::(0
	Answer:b) Reverse	20,0
	Explanation: A Zener diode utilises reverse characteristic for	
.0.	voltage regulation	
	A Zener diode is used as avoltage regulating device	
S	A Zener diode is used as a voltage regulating device	
a) Shunt	
100 b) Series	
	Series-shunt	
d _.) None of the above	434
	Answer: a) Shunt	1M
::05	Explanation: The Zener diode begins regulation operation	(
	only when the input voltage (V_{in}) is equal (or more than) Zener breakdown voltage (V_z). Otherwise, the diode remains	
	"Off-state". Due to the parallel operation with load, Zener	
Ť	diodes are referred to as shunt voltage regulators.	, and the second
	Which of the following is true about the temperature	
.0	coefficient or TC of the Zener diode?	
	a) For Zener voltage less than 5V, TC is negative	
701	b) For Zener voltage around 5V, TC can be made zero	
	c) For higher values of Zener voltage, TC is positive	
00	d) All of the mentioned	00
	Answer: d) All of the mentioned	1M
. 0.	Explanation: All of the mentioned are true for the TC of a	
	zener diode.	
::(5)	::(03)	3.0
200		2377

.:.05	Zener diodes can be effectively used in voltage regulator.	.:.05
	However, they are these days being replaced by more	
	efficient	
	a) Operational Amplifier	
102	b) MOSFET	
• . (c) Integrated Circuits	
	d) None of the mentioned	1M
CUI		
.:(05)	Answer: c) Integrated Circuits	.:(05
	Explanation: ICs have been widely adapted by the industries	
	over conventional zener diodes as their better replacements	
	for a voltage regulators.	
• (Which of the following is true about the resistance of a Zener	
	diode?	
103	a) It has an incremental resistance	S
*(0)	b) It has dynamic resistance	*(0)
200	c) The value of the resistance is the inverse of the slope of the	200
	i-v characteristics of the Zener diode	
	d) All of the mentioned	
		1M
Maileshiri	Answer: d) All of the mentioned	
5	Explanation: All of the statements are true for the resistance	6
X	of the zener diode.	Silos.
200		3.0
	\$ \cdot \cdo	
65	cs'	cs!"
ilo.		illo
Malicshini	A Malicshinia Malicshinia	Mailcshir

Malicsini Mailcsini Malicslin Malicshi Thank You Mailcshinia nailcshinia Mailcshinia Malicshir Mailcshinia Mailcshinia Mailcshinia Malicshir Mailcshinia Mailcshinia Mailcshinia Mailcshir Mailceinia Mailcshinia Mailcshinia Malicshir

dicsulling	Hicshill	ijo
Unit V	Transistors Mar	ks - 12
S. N.		Marks
Silcshinis	BJT stands for a) Bi-Junction Transfer b) Blue Junction Transistor c) Bipolar Junction Transistor	
1.	d) Base Junction Transistor Answer: c) Bipolar Junction Transistor Explanation: BJT stands for Bipolar Junction Transistor. It was the first transistor to be invented. It is widely used in circuits.	1M
Mailcshill	The doped region in a transistor are a) Emitter and Collector b) Emitter and Base c) Collector and Base	Majilo
2.	d) Emitter, Collector and Base Answer: d) Emitter, Collector and Base Explanation: There are three doped regions forming two p-n	1M
Silosiili	junctions between them. There are two types of transistors n-p-n transistor and p-n-p transistor.	

Mailcshinia

Mailcshinia

Mailcshir

Mailcshinia

Which region of the transistor is highly doped?	· do
a) Emitter	
b) Base	100
c) Collector	
d) Both Emitter and Collector	
3	1M
Answer: a) Emitter	
Explanation: In a transistor, emitter is of moderate size an	d
heavily doped. Collector is moderately doped and larger as	
compared to the emitter. Base is very thin and lightly dope	
Both the junctions in a transistor are forward biased.	
a) True	
b) False	>
4. Answer: b)False	1M
Explanation: Emitter-base junction of the transistor is forv	vards
biased while the collector-base junction of the transistor is	
reverse biased or vice versa depending on the condition de	
Which junction is forward biased when transistor is used a	os an
amplifier?	is all
a) Emitter-Base	>
b) Emitter-Collector	
	S
c) Collector-Base d) No junction is forward biased	
u) No junction is for war a biased	
5.	1M
Answer: a) Emitter-Base	
Explanation: For Transistor to be used as an amplifier, the	
emitter-base junction is forward biased and the base-colle	ctor
region is reverse biased. This state is called an active state	
(5)	5
V.O. V.O.	7.0

. 63	If I_e is the current entering the emitter, I_b is the current leaving	.05
	the base and I_c is the current leaving the collector in a p-n-p	
700	transistor used for amplification, what is the relation between	000
	I _e , I _b and I _c ?	
	a) $I_e < I_c$	
	b) $I_c < I_b$	
	c) I _b <i<sub>c</i<sub>	
6.	d) $I_e < I_b + I_c$	11/4
		1M
,00	Answer: c) $I_b < I_c$	100
	Explanation: The total current entering the emitter, I _e , goes to	
	the base form where most of the current enters the collector	
. 0	and a very small fraction of the current leaves the base. Thus,	
	$I_b < I_c$.	
	In the active state, the emitter-base junction has a higher	
.:.05	resistance than the collector-base junction.	.:.05
	a) True	
	b) False	
7.	Answer: b) False	1M
.0	, and the second	
	Explanation: Since the emitter-base junction is forward biased,	
chi	their resistance is lower than the collector-base junction, which	ci()
	is reverse biased.	
20,		200
	From the figure, what is β_{ac} when V_{CE} is 10V and I_c is 4 mA?	
	Collector Current (mA)	
	Unrent Control of Cont	
	40 µА	
	30 µА	1M
S	4 — 20 µА	S
*10		il vi
	Collector to Emitter Voltage	

*(0)	a) 50	.:(0
	b) 100	000
	c) 150	
	d) 200	
. 0		
	Answer: c) 150	
	Explanation: We know, $\beta_{ac} = \Delta I_c/\Delta I_b$	
ail CS.	Now, at $V_{CE} = 10V$, we read two values of I_c from the graph.	(
	Then, $\Delta I_b = 10~\mu A$, $\Delta I_c = 1.5~m A$ Therefore, $\beta_{ac} = 1.5~m A/10~\mu A$	
	= 150.	
	= 150.	
	A low input to the transistor gives	
.0	a) Low output	
(0)	b) High Output	
CUI.	c) Normal Output	
9.	d) No Output	J.C
9.	Answer: b) High Output	1M
	Explanation: A low input to the transistor gives a high output	
	and a high input gives a low output. The switching circuits are	·
	designed such a way that the transistor does not stay in the	
:0	active state.	
	From the output characteristics of a transistor, one cannot	
5	calculate	
	a) I _B	
	b) V _{BE}	
	c) I _c	
10.	d) V _{CE}	43.6
10.	Answer: b) V _{BE}	1M
	Explanation: The output characteristics graph for a transistor	
	gives us the relation between the collector current and the	
. , 5	emitter voltage. It also gives us the value of base current. But it	. (
	gives no information about the base-emitter voltage.	
*	•	*

(5)	What is the expression for the Current Amplification factor?	100
	a) ΔΙ c ΔV c	
,00	b) ΔVcΔIc	No
	c) (ΔΙCΔΙΒ)VCE	
	d) (ΔΙCΔΙΒ)VBE	
. 0		
11.	Answer: c) (ΔΙCΔΙΒ) VCE	1M
Silli	Explanation: Amplification factor can be defined as the ratio of	S.C.
ail ^C	the change in collector current to the change in base current at a	×.05
000	constant collector-emitter voltage when the transistor is in	20.0
(),	active state. The correct expression for the amplification factor	0,
	is: (ΔΙCΔΙΒ) VCE.	
3	A transistor has	
	a) one pn junction	
-6	b) two pn junctions	6
	c) three pn junctions	×10
12.	d) four pn junctions	3.
		1M
	Answer: b) two pn junctions	
	Explanation: A transistor consists of 2 pn junctions in the series	
	of p-n-p or n-p-n.	
	The word of Clark time leaves in a transition in	
. (5)	The number of depletion layers in a transistor is	. (5)
	a) four	
	b) three	.00
	c) one	
13.	d) two	114
. 0		1M
	Answer: d) two	• •
C()	Explanation:Number of depletion layers in a transistor is two. A	
::(0)	transistor made up of two PN diodes connected back to back.	:.05
		4

The element that has the biggest size in a transistor is	× Co
• a) collector	CO.
• b) base	
• c) emitter	
14. • d) collector-base junction	1M
Answer: a) collector	
Explanation:The collector is the biggest component in the	S
transistor.	
In a pnp transistor, the current carriers are	
	•
a) acceptor ionsb) donor ions	
c) free electrons	
• d) holes	
15. Answer: d) holes	1M
	Syl.
Explanation: In PNP transistors, in this type of transistor, majority charge carriers are holes, and minority	
charge carriers are electrons.	
A transistor is a operated device.	
a) current	S
b) voltage	dillo
c) both voltage and current	600
16. d) none of the above	1M
 Answer: a) current Explanation: It is a current-driven device since the collector 	
current is controlled via the base current.	c (1)
	×

		col
*103	In an npn transistor, are the minority carriers	*102
a	free electrons	200
b	holes	
c		
17. d	acceptor ions	1M
	Answer: b) holes	
	Explanation:In an NPN transistor, holes are the minority	
::(05)	carriers and free electrons are the majority carriers.	::05
	In a transistor, the base current is about of emitter current.	
	25%	
0,	35%	
18. d		434
		1M
.:.05	Answer: d) 5%	.:.05
	Explanation:The Base current is typically 1% to 5% of the	
	emitter or collector current for small-signal transistors.	
	The input impedance of a transistor is	
	a) high	
	b) low	
	c) very high	
19.	d) almost zero	1M
•	Answer:c) very high	
	Explanation:Since the transistors have a constant current	
	source in the emitter circuit, the input impedance is very high.	, , , , , , , , , , , , , , , , , , ,
	In a transistor,	
20.	IC = IE + IB	1M
. (3)	IB = IC + IE	
	IE = IC – IB	
·		•

:(0)	IE = IC + IB	(0
Wan	Answer: IE = IC + IB	Warr
	Explanation:It can also be seen from the common emitter circuit	
	above that the emitter current Ie is the sum of the collector	
.0	current, Ic and the base current, Ib, added together so we can	
	also say that " Ie = Ic + Ib " for the common emitter	
S	configuration.	
	The value of α of a transistor is	*//
		00.
•	a) more than 1	
	b) less than 1	
·	c) 1	
	d) none of the above	
21.	Answer: less than 1	1M
.:.05	Evaluation collector gurrent is almost some acomitton gurrent	.:.0
2	Explanation:collector current is almost same as emitter current. Hence ratio of collector to emitter current is less than unity	
	always. So alpha is less than unity. It's value lies between 0.9 to	
	0.995.	
30	The most commonly used transistor arrangement is	
	arrangement.	
	a) common emitter	
	b) common base	
	c) common collector	00.
22.	d) none of the above	
	A	1M
	Answer: a) common emitter	
	Explanation:The most commonly used transistor arrangement	
	is common emitter arrangement.	
::(5)	::(03)	:.(0

		C.
x Co	In a BJT	xi0°
20.	a) The base region is sandwiched between emitter and collector	70,
	b) The collector is sandwiched between base and emitter	
	c) The emitter region is sandwiched between base and collector	
	D.None of the above	
23.		1M
	Answer: a) The base region is sandwiched between emitter and	
5	collector	C
X	Explanation: In a BJT The base region is sandwiched between	N/O
	emitter and collector	20.
	A U.C. as and assillators using DIT energia in region	
	Amplifiers and oscillators using BJT, operate in region	
	a) Inverted mode	
	b) Active	
	c) Cut off	
24.	d) Saturation	1M
X	Answer: b)Active	N. W.
	Ermlanation: BIT aparata in active region to work as Amplifier	20.
	Explanation: BJT operate in active region to work as Amplifier and Oscillators.	
	and Oscinators.	
	Base is always a and doped layer.	
	a) Thin, lightly	
	b) Thick, lightly	
5	c) Thin, heavily	C
25.	Answer: a) Thin, lightly	134
		TM
	Explanation: In a transistor, the base is very lightly doped as	
	compared to the emitter because by doing so. Base current is	
	high. Recombination is decreased in the base region.	
	For a BJT, for common base configuration the input	
	characteristics are represented by a plot between which of the	
6526	following parameters?	C
26.	a) V _{BE} and I _E	1M
0.	b) V _{BE} and I _B	20.
	DJ VBE and 1B	

.:.69	c) V _{CE} and I _C	.:.0
	d) V _{CC} and I _C	
00	Anguary VV and I	9
	Answer: a) V _{BE} and I _E	
	Explanation: The input signal is applied between the base and	
.0	the emitter terminals. Input current flowing is the base current	
	and hence characteristics are represented by a plot between	
C.C.I.	V_{BE} and I_{B} .	
	::03	
	In a BJT, if the collector-base junction is reverse-biased and the	37
	base-emitter junction is forward-biased, which region is the BJT	
	operating in?	*
	a) Saturation region	
.0	b) Active region	
	c) Cutoff region	
27.	d) Reverse active region	1M
.:.05	::(5)	11.1
	Answer: b) Active region	3
	Explanation: If the collector-base junction is reverse-biased and	
	the base-emitter junction is forward-biased, then the BJT	
	functions in the active region of the output characteristics.	
.0		
	In a BJT, if the collector-base junction is forward-biased and the	
S	base-emitter junction is forward-biased, which region is the BJT	
ijos	operating in?	N/
20.	a) Saturation region	3.0
	b) Active region	
	c) Cutoff region	
28.	d) Reverse active region	1M
3		
	Answer: a) Saturation region	
S	Explanation: If the collector-base junction and the base-emitter	
XIO -	junction are both forward-biased, then the BJT functions in the	N/C
	saturation region of the output characteristics.	300

	In a BJT, if the collector-base junction and the base-emitter	1.05
	junction are both reverse-biased, which region is the BJT	
	operating in?	200
	a) Saturation region	
	b) Active region	
	c) Cutoff region	
29.	d) Reverse active region	1M
		1101
	Answer: c) Cutoff region	.:.05
	Explanation: If the collector-base junction and the base-emitter	
	junction are both reverse-biased, then the BJT functions in the	
	cutoff region of the output characteristics.	
	cuton region of the output characteristics.	
. 0	In P-N-P transistor, base will be of	
	a) P material	
	b) N material	c ()
	c) Either of the above	*:03
	d) None of the above	000
30.	Answer:b) N material	1M
	Explanation: The transistor in which one n-type material is	
	doped with two p-type materials such type of transistor is	
	known as PNP transistor.Base will be of N type material	
5	A P-N-P transistor has	S
	a) Only acceptor ions	illo-
~'()"	b) Only donor ions	0.0
	c) Two P-regions and one N-region	
	d) Three P-N junction	
31.	Answer:c)Two P-regions and one N-region	1M
	Explanation:The transistor in which one n-type material is	
. (5)	doped with two p-type materials such type of transistor is	. (5)
	known as PNP transistor.	
We land		

COLL		c ()
ai Co	ilos dilos	ilos
00	Which type of amplifiers exhibits the current gain	20.
	approximately equal to unity without any current amplification?	
	a) CE	
	b) CB	
	c) CC	
chill	d) Cascade	s il
	Answer: b) CB	die
32.	Explanation: In common base amplifier, input signal is applied	1M
	at emitter terminal while the amplified output signal is obtained	
	at the collector terminal with respect to ground.	
	For the AC signals, the base terminal is specifically connected to	
	ground through the capacitor.	
	Even, the output resistance is very high & hence, the current	
-5	gain is approximately equal to unity. Due to this, there is no	. (5)
	possibility of current amplification. Consequently, the CB	
4,0	amplifier exhibits high voltage gain.	4.0.
	The configuration in which voltage gain of transistor amplifier is	
	lowest is	
	a) common collector	
	b) common emitter	
5	c) common base	6
	d) common emitter & base	il V
0.		20.
33.	The state of the s	11/
	Answer: a) common collector Explanation: In common collector configuration (also known as	1M
	the emitter follower) because the emitter voltage follows that of	
	the base. Offering a high input impedance and a low output	
	impedance it is extensively used as a buffer. The voltage gain is	
5	unity, even though current gain is high. The input and output	(5)
	signals are in phase.	
~~	Signais are in phase.	20

(5)	The configuration in which current gain of transistor amplifier	(
	is lowest is	
400	a) common collector	100
	b) common base	
	c) common emitter	
. 0	d) common emitter & base	
0)		
34.	Answer: b) common base	1M
x Co	Explanation: In Common base configuration, the input	w/C
	impedance is very low; While offering a high output impedance.	3.0
	Although the voltage is high, the current gain is low and the	
	overall power gain is also low when compared to the other	
	transistor configurations available. Thus, there is no current	
	amplification because of unity current gain.	
	The configuration in which input impedance of transistor	
. (5)	amplifier is lowest is	٠. ٥
	a) common collector	
.00	b) common emitter	400
	c) common base	
	d) common emitter & base	
35.		
33.	Answer: c) common base	1M
S	Explanation: In Common base configuration, the input	
io	impedance is very low; While offering a high output impedance.	W/C
20.	Although the voltage is high, the current gain is low and the	0.0
	overall power gain is also low when compared to the other	
	transistor configurations available.	
. 0	The configuration in which output impedance of transistor	
	amplifier is highest is	
36.	a) common collector	1M
::(5)	b) common base	1M
	c) common emitter	20,

d) common collector and base	::(0)
Answer: b) common base	
	*
overall power gain is also low when compared to the other	•
transistor configurations available.	C
*/C2	XIO 3
In which region a transistor acts as an open switch?	
a) cut off region	
b) inverted region	
c) active region	
d) saturated region	•
Answer: a) cut off region	5
	1M
2.0	
	-(
	. (5)
	.00
d) saturated region	
	134
Answer: d) saturated region	1M
Explanation: In this mode, both the junctions are forward	
biased. The negative terminal of the battery is connected to the	
emitter. The collector current becomes independent of base	
current. In this mode the transistor acts as a closed switch.	
· / / / / / / / / / / / / / / / / / / /	
	Answer: b) common base Explanation: In Common base configuration, the input impedance is very low; While offering a high output impedance. Although the voltage is high, the current gain is low and the overall power gain is also low when compared to the other transistor configurations available. In which region a transistor acts as an open switch? a) cut off region b) inverted region c) active region d) saturated region Explanation: In this mode, both the junctions are reverse biased. The transistor has practically zero current because the emitter does not emit charge carriers to the base. There is negligibility current due to minority carriers. In this mode the transistor acts as an open switch. In which region a transistor acts as a closed switch? a) cut off region b) inverted region c) active region d) saturated region Answer: d) saturated region Explanation: In this mode, both the junctions are forward biased. The negative terminal of the battery is connected to the emitter. The collector current becomes independent of base

69	The current which is helpful for LED to turn on is	(
	a) emitter current	
	b) base current	400
	c) collector current	
	d) depends on bias	
.0		
39.	Answer: c) collector current	1M
S	Explanation: Depending on the type of load, a collector current	
	is induced that would turn on the motor or LED. The transistor	N/C
20.0	in the circuit is switched between cut off and saturation. The	200
	load, for example, can be a motor or a light emitting diode or	
	any other electrical device.	
	Which of the following statements is true?	
	a) Solid state switches are applications for an AC output	
	b) LED's can be driven by transistor logics	
5	c) Only NPN transistor can be used as a switch	
	d) Transistor operates as a switch only in active region	
.0.		V.0.
40.	Answer: b) LED's can be driven by transistor logics	1M
	Explanation: Output devices like LED's only require a few	
	milliamps at logic level DC voltages and can therefore be driven	
	directly by the output of a logic gate. However, high power	
.:.65	devices such as motors or lamps require more power than that	.:.0
	supplied by an ordinary logic gate so transistor switches are	
	used.	
	The base emitter voltage in a cut off region is	
	a) greater than 0.7V	
.0	b) equal to 0.7V	
41.	c) less than 0.7V	134
collin	d) cannot be predicted	1M
×103	*;C3	**(
201	Answer: c) less than 0.7V	37

69	Explanation: From the cut off characteristics, the base emitter	()
	voltage (V_{BE}) in a cut off region is less than 0.7V. The cut off	
.00	region can be considered as 'off mode'. Here, $V_{BE} > 0.7$ and $I_C = 0$.	000
	For a PNP transistor, the emitter potential must be negative	
	with respect to the base	
	In saturation region, the depletion layer	
	a) increases linearly with carrier concentration	
S	b) decreases linearly with carrier concentration	65
	c) increases by increasing the emitter current	XIO T
War	d) decreases by decreasing the emitter voltage drop	War
42	Answer: d) decreases by decreasing the emitter voltage drop	
42.	Explanation: Here, the transistor will be biased so that	1M
	maximum amount of base current is applied, resulting in	*.4
	maximum collector current resulting in minimum emitter	
.:.05	voltage drop which results in depletion layer as small as	
	possible and maximum current flows through the transistor.	
		400
	The base emitter voltage in a saturation region is	
.0	a) greater than 0.7V	
	b) equal to 0.7V	
c	c) less than 0.7V	cil
	d) cannot be predicted	×103
20,		000
	Answer: d) cannot be predicted	
43.	Explanation: From the saturation mode characteristics, the	1M
	transistor acts as a single pole single throw solid state switch. A	
	zero collector current flows. With a positive signal applied to the	
	base of transistor it turns on like a closed switch.	
(5)	cs)	(5)
		Ni V
Wo.	W.o.	400

.:.69	The switching of power with a PNP transistor is called	::05
	a) sourcing current	
	b) sinking current	
	c) forward sourcing	
	d) reverse sinking	
44		
	Answer: a) sourcing current	1M
S.	Explanation: Sometimes DC current gain of a bipolar transistor	cil.
×	is too low to directly switch the load current or voltage, so	*:03
0.	multiple switching transistors is used. The load is connected to	20.0
	ground and the transistor switches the power to it.	(),
	The switching of power with a NPN transistor is called	
.0	a) sourcing current	
	b) sinking current c) forward sourcing	
65	d) reverse sinking	65
	u) reverse sinking	illo
45.		1M
	Answer: b) sinking current	
	Explanation: Sometimes DC current gain of a bipolar transistor	
	is too low to directly switch the load current or voltage, so	
	multiple switching transistors is used. The load is connected to	
	supply and the transistor switches the power to it.	
-6	Which of the following is not a part of a BJT?	(5)
	a) Base	
.00	b) Collector	.00
	c) Emitter	
	d) None of the mentioned	
46.	.0	1M
:(0)	Answer: d) None of the mentioned	
cill.	Explanation: BJT consists of three semiconductor regions, base	cil
× C	region, emitter region and collector region.	*(0)
0,		3.
(),		4.

		G\
	ilos alics	NIO S
	In which of the following modes can a BJT be used?	0.
	a) Cut-off mode	
	b) Active mode	
47.	c) Saturation mode	
17.	d) All of the mentioned	1M
	Answer: d) All of the mentioned	
5	Explanation: These three are the defined regions in which a BJT	3
	operates.	XIV.
0.	operates.	20.0
	If a BJT is to be used as a switch, it must operate in	
	a) Cut-off mode or active mode	
	b) Active Mode or saturation mode	
. 0	c) Cut-off mode or saturation mode	
	d) Cut-off mode or saturation mode or active mode	
48.	551	1M
	Answer: c) Cut-off mode or saturation mode	N/O
0.	Explanation: A BJT operates as an amplifiers in active mode and	
	as a switch in cut-off or saturation mode.	
	as a switch in cut-on or saturation mode.	
	In cut off mode	
	a) The base-emitter junction is forward biased and emitter-	
	collector junction is reversed biased	
5	b) The base-emitter junction is forward biased and emitter-	5
2100	collector junction is forward biased	
	c) The base-emitter junction is reversed biased and emitter-	
	collector junction is reversed biased	
49.	d) The base-emitter junction is reversed biased and emitter-	1M
	collector junction is forward biased	
.0	Answer: c) The base-emitter junction is reversed biased and	
	emitter-collector junction is reversed biased	
5	Explanation: In cut-off mode there is no current flowing through	5
NO.	the BJT hence both junctions must be reversed biased else if	
20.	either of them is forward biased then the current will flow.	(0.

	On which of the following does the collector current not	•.(
	depends upon?	
100	a) Saturation current	100
	b) Thermal voltage	
	c) Voltage difference between the base and emitter	
50 1.00	d) None of the mentioned	
50.		1M
	Answer: d) None of the mentioned	
*(0)	Explanation: Collector current depends linearly of the	,:(0
	saturation current and exponentially to the ratio of the voltage	37.
	difference between the base and collector and thermal voltage.	(),
	Where is the input measured in a common base transistor	
	physical model?	
	a) Collector terminal b) Emitter terminal	
5	c) Base terminal	
	d) Ground	
5.1	u) di bullu	
5.1		1M
	Answer: b) Emitter terminal	
	Explanation: In the physical model of a common base transistor	
	amplifier the input is measured at the emitter terminal of the	
	BJT biased device. Whereas, the output is measured across the	
. 65	collector terminal of the biased BJT device.	٠. (
	Which parameter of the physical model is varied while	
9	measuring the input characteristics of a common-base	100
	transistor?	
	a) Emitter current	
52.	b) Emitter voltage	1M
(1)	c) Collector current	11/1
e Uli	d) Emitter base voltage	
**(5)	Answer: d) Emitter base voltage	

69,	Explanation: To determine the input characteristics, the	105
	collector-base voltage is kept constant at zero volts and the	
00	emitter base voltage is increased from zero volts to different	
	voltage levels. For each voltage level of the input voltage, the	
	input current is recorded.	
. 0	747 · · · · · · · · · · · · · · · · · ·	
	Where is the output measured in a common base transistor	
	physical model?	
(5)	a) Collector terminal	05
	b) Emitter terminal	
00	c) Base terminal	
	d) Ground	
		1M
. 0	Answer: a) Collector terminal	
	Explanation: In the physical model of a common base transistor	
	amplifier the output is measured at the collector terminal of the	
.:.65	BJT biased device. Whereas, the input is measured across the	.:.05
	emitter terminal of the biased BJT device.	
	Which parameter of the physical model is varied while	
	measuring the output characteristics of a common-base transistor?	
?	a) Emitter current	
0	b) Emitter voltage	• •
	c) Collector current	
	d) Collector base voltage	::05
	u) concetor base voltage	37.
53.		111
	Answer: d) Collector base voltage	1M
	Explanation: To determine the output characteristics, the	
2	emitter current is kept constant at zero and the collector base	
	voltage is increased from zero volts to varying voltage levels.	
ci.	For each voltage level of the output voltage, the collector	cill.
	current is recorded.	*100
20,		00.
		(),

		- cn
Majics	How do you calculate the dynamic input resistance of a CB transistor?	Mailes
54,	a) $\Delta V_{BE} / \Delta I_{C}$ b) $\Delta V_{BE} / \Delta I_{E}$ c) $\Delta V_{CB} / \Delta I_{C}$ d) $\Delta V_{CB} / \Delta I_{E}$ Answer: b) $\Delta V_{BE} / \Delta I_{E}$	1M
	Explanation: Dynamic input resistance is defined as the ratio of change in emitter base voltage to the corresponding change in the emitter current. While the collector voltage is kept at a constant value. Therefore, $\mathbf{r}_i = \Delta V_{BE} / \Delta I_E$. A bipolar junction transistor has beta=250 and base	
Mailes	current=10micro ampere. What is the collector current? a) 25 micro ampere b) 10 micro ampere c) 2.5 milli ampere d) 10 milli ampere	Mailes
55.	Answer: c) 2.5 milli ampere Explanation: Given: Base current(Ib)=10micro ampere Beta=250 Since Ic(collector current)=beta*Ib(base current) Ic(collector current)=250*10 micro ampere=2.5 milli ampere.	1M
56.	What happens to the collector current if the emitter current increases while no base voltage is applied? a) Increases b) Decreases c) No current d) First increases then decreases	1M

		- CU
N C S	ilos dilos	XICS
	Answer: c) No current	
	Explanation: When no voltage is provided at the base then no	
	current passes from emitter to collector, so even if very high	
	potential difference is applied at the emitter collector junction,	
	no current flows through it. This configuration is used for	
	switching in various appliances using bipolar junction	
	transistor.	::(5)
	Which is an example of bipolar junction transistor?	
.00	a) BC547B	900
	b) CMCP793V-500	
	c) SLB700A/06VA	
. 0	d) MBR5H100MFST1G	
		•. <
57.	Answer: a) BC547B	1M
.:.65	Allswel: a) bC547b	IW S
	Euplanation PCT 47D is an around of him day investign	
	Explanation: BC547B is an example of bipolar junction transistor. It is most common and widely used NPN transistor. It	
	is small, cheap, uses less power and fulfills most of the	
. 0	requirement for general purpose use.	
.05	In bipolar junction transistors both electron and holes are	•.<
	responsible for conduction.	
.:.05	a) True	.:.05
	b) False	
58.	Answer: a) True	
	Explanation: In bipolar junction transistors both electron and	1M
3	holes are responsible for conduction. The term "bipolar" itself	
	mean two polarities which represents that both charged particle	
S	are responsible for the conduction in the bipolar junction	6
	transistor.	
20.		

MailCo	Three PN junctions is present in a bipolar junction transistor. a) True b) False	Mailes
59.	Answer: b) False Explanation: A bipolar junction transistor has 2 PN junctions. First PN junction is between the base emitter terminal and second PN junction is between base collector terminals. A base is always between emitter and collector.	1M
Maileshinis	What is the minimum voltage required to make base emitter junction of a real silicon bipolar junction transistor in forward biased? a) 0.7 volts b) 1.8 volts c) 2.3 volts d) 0.3 volts	Mailesni
60.	Answer: a) 0.7 volts Explanation: 0.7 volts is the minimum voltage required to make the base emitter junction of a real silicon bipolar junction transistor in forward biased. This 0.7 volt potential difference between base and emitter terminal makes the PN junction in forward biased.	1M
61.	What are the parameters over which transfer characteristics curve of bipolar junction transistor is made in common emitter configuration? a) Emitter Current and time b) Emitter Voltage and time c) Collector Current and frequency d) Collector to Emitter Voltage and Collector current	1M

Mailos	Answer: d) Collector to Emitter Voltage and Collector current	Mail
	Explanation: Collector to Emitter Voltage and Collector current	
	are the parameters considering which transfer characteristics	
3	curve of bipolar junction transistor is made. It is voltage versus	
	current graph in which Current is denoted on Y-axis and voltage	
::(5)	is denoted on (X-axis).	.:.0
	A bipolar junction transistor has beta=100 and base current= 8	
9	micro ampere. What is the collector current?	100
	a) 25 micro ampere	
	b) 0.8 micro ampere	
. 0	c) 0.8 milli ampere	
Silling	d) 10 milli ampere	
62.	Answer: c) 0.8 milli ampere	1M
20.0		10°
	Explanation: Given;	
	Base current (Ib) = 8 micro ampere	
	Beta=100	
	Since Ic(collector current)=beta*Ib(base current)	
	Ic(collector current)=100*8 micro ampere=0.8 milli ampere.	
:109	FET is a voltage controlled device.	.:(0
	a) True	
	b) False	
	Answer: a) True	
63	Explanation: Field Effect Transistors are voltage controlled	1M
	devices, by applying some voltage between the gate and source,	
COI.	the drain current can be controlled. In order to control the	
:.03	operation of FET the gate to drain voltage is varied to operate	J.(C
	the FET in different regions of operation.	20,

(3)	Which of the following statement is true about FET?	()
	a) It has high output impedance	
.00	b) It has high input impedance	000
	c) It has low input impedance	
	d) It does not offer any resistance	
64	Answer: b) It has high input impedance	1M
S		S
*(0)	Explanation: Because of the Sio2 insulator, doped between drain	*(0)
	and source at the top, the resistance offered by this is very high.	3.
	The insulator will stop the flow of electron from one part to	
	another which acts as an open circuit.	
	Comparing the size of BJT and FET, choose the correct	
	statement?	
	a) BJT is larger than the FETb) BJT is smaller than the FET	
5	c) Both are of same size	(5)
	d) Depends on application	
65	a) Depends on approaction	1M
	Answer: a) BJT is larger than the FET	
	Explanation: BJT usually are built with a thickness of up to 1cm	
	whereas the FET uses a fabrication technique which makes its	
	size in mm.	
	What is the main advantage of FET which makes it more useful	::(0)
	in industrial applications?	37
	a) Voltage controlled operation	
	b) Less cost	
66	c) Small size	
00	d) Semiconductor device	1M
5	Answer: c) Small size	S
		XIO
0.3.	Explanation: Because of its small size, the IC chips can be made	0.

. (5)	even smaller which reduces the wear and tear. The process	•. (
	technology used with process technology constant at which is	
200	the ratio of Width and Length, the FET is made more	0.00
	advantageous.	
	For a FET when will maximum current flows?	
. 0	a) $V_{gs} = 0V$	
	b) $V_{gs} = 0v$ and $V_{ds} >= V_p $	
	c) $V_{DS} >= V_p $	
67	d) $V_p = 0$	
		1M
.00	Answer: b	000
	Explanation: For a FET the current reaches maximum that is	
	IDSS occurs when $V_{gs} = 0V$ and $V_{DS} >= V_p $	
. 0	What is the value of current when the gate to source voltage is	
	less than the pinch off voltage?	
	a) 1A	
.:.(5)	b) 5A	.:.0
	c) 100A	
67	d) 0	
		IM
	Answer: d) 0	
.0	Explanation: When the gate to source voltage is less than pinch	
	off, both of the junctions will be reverse biased and hence no	
	current flows.	
::(5	What is the value of drain current when V _{gs} =pinch off voltage?	(0
	a) 0A	37
	b) 1A	
	c) 2A	, and the second
	d) Cannot be determined	
68		1M
	Answer: a) 0A	
chi	Explanation: $I_D = I_{DSS} (1-V_{gs}/V_p)^2$	
× (C)	If $V_{gs} = V_{p}$, then	2/2
	$I_D = I_{DSS} (1-1)=0.$	200

69	To use FET as a voltage controlled resistor, in which region it	(3)
	should operate?	
,00	a) Ohmic region	
	b) cut off	
	c) Saturation	
69	d) cut off and saturation	1M
		•. <
	Answer: a) Ohmic region	
	Explanation: By varying the gate to source voltage, Resistance	.:.05
	can be varied as follows $r_d = r_o/(1-V_{gs}/V_p)^2$	2
	For an n-channel FET, What is the direction of current flow?	
	a) Source to drain	
	b) Drain to source	
.0	c) Gate to source	
70	d) Gate to drain	1M
C.C.	elli, elli,	C
*(0)	Answer: b) Drain to source	*(0)
20	Explanation: When a voltage greater than pinch off is applied,	2011
	the current starts flowing from Drain to source.	
	For a p-channel FET, What is the direction of current flow?	
	a) Source to drain	
3	b) Drain to source	
	c) Gate to source	
S	d) Gate to drain	S
		XIO 3
20.	Answer: a) Source to drain	3.0
70	Explanation: When the voltage is lesser than pinch off, the	1M
	current flows from Source to Drain.	
	The forward bias drain and gate is the reason for the flow of	
	electron from Drain to source, as the conventional current flows	
	opposite to the electron flow, the current will flow from Source	
5	to Drain.	5
10.0		.0.

GOIII.		- GN
	ajics ajics	ailos
	Field effect transistors are known as	
	a) unipolar device	
	b) bipolar device	
71 . 7	c) tripolar device	1M
	d) multipolar device	
c/li	chi.	C
;;(0)	Answer: a) unipolar device	
	Explanation: Field effect transistors are unipolar transistors as	20.
	they involve single-carrier-type operation.	
	Field effect transistor's conductivity is regulated by	
	a) input current	
?	b) output current	
	c) terminal voltage	
CILI	d) supply voltage	cill
78	;;C ³	1M
	Answer: c) terminal voltage	20.
	Explanation: Field effect transistor's conductivity is regulated by	
	the voltage applied to a terminal (the gate) which is insulated	
	from the device.	
2	In FET, the current enters the channel through	
	a) source	
Sil	b) drain	S
ailos	c) gate	*(0)
200	d) nodes	200
79	Answer: a) source	1M
	Explanation: In field effect transistor, the current enters the	1111
2	channel through source and the current leaves the junction	
	through drain.	
		C.
iic	*(C)	*(0)
20		200

		60
	Which terminal bias the transistor to operation?	.:(5)
	a) source	
	b) drain	
	c) gate	
	d) base	
80	Answer: d) Base	1M
	Explanation: Other than the three terminals, source drain and	
::(05)	gate, there is a fourth terminal called as body or base. This is	::05.
20,	used to bias the transistor to operation.	37
	In FET, the width is greater than the length of the gate.	
	a) true	
	b) false	
01	Answer: a) true	1M
01	Explanation: In FET, the width is greater than the length of the	TIVI
.:.09	gate. Length gives the distance between source and drain. Width	.:.05
	is the extension of the transistor, in the direction perpendicular	
	to cross section.	
	Which terminal controls the electron flow passage?	
	a) source	
.0	b) drain	
05	c) gate	
	d) base	
82	.:.05	1M
82	Answer: c) gate	2
	Explanation: Gate permits the electron to flow through or block	
	their passage by creating or eliminating the channel between	
	source and drain.	
.0	The expansion of depletion region in n-channel device makes	
(1)	the channel	
C-02	a) narrow	11/4
83	b) wide	1M
2	c) does not affect the channel	37,
•	▼ · · · · · · · · · · · · · · · · · · ·	Ÿ

::(5)	d) cannot be determined	:(05)
		37
	Answer: a) narrow	· Cli
	Explanation: In n-channel depletion mode device, as the	
	depletion region width expands, it encroaches the channel from	
.0	the sides and the channel becomes narrow.	
	Which voltage increases the channel size?	
S	a) negative Vgs	6
x C	b) positive Vgs	xiO2
20.0	c) negative Vds	0.0
84	d) positive Vds	1M
	Angewer b) manising Wes	
	Answer: b) positive Vgs	
	Explanation: A positive gate to source voltage increases the	
	channel size and allows the electrons to flow easily.	
65	Which mode of operation of FET is used, when amplification is needed?	5
	a) active	
~~	b) saturation	~.0.
	c) non saturation	
85	d) linear	1M
	Answer: b) saturation	
	Explanation: Saturation mode, which is in between the ohmic	
. 65	and saturation region is used when amplification is needed.	.05
	Which of the following relation is true about gate current?	
00	a) $I_G=I_D+I_S$	900
	b) I _D =I _G	
	c) $I_S = I_G$	
25.10	d) I _G =0	
86	Answer: d) I _G =0	1M
CUI,	Explanation: The FET physical structure which contains silicon	
:(0)	dioxide provides infinite resistance. Hence no current will flow	::05
25	through the gate terminal.	20,

		20
	For a fixed bias circuit the drain current was 1mA, what is the	105
	value of source current?	
	a) 0mA	200
	b) 1mA	
	c) 2mA	
87	d) 3mA	1M
	Answer: c) 2mA	*
	Explanation: We know that for an FET same current flows	
55,	through the gate and source terminal, Hence source	.05
	current=1mA.	
	For a fixed bias circuit the drain current was $1mA$, $V_{DD}=12V$,	400
	determine drain resistance required if V_{DS} =10V?	
	a) 1KΩ	
	b) 1.5KΩ	
	c) 2KΩ	
-90	d) 4KΩ	114
500		1M
	Answer: c) 2KΩ	
	Explanation: V _{DS} =V _{DD} -I _D R _D	200
	$=>10=12-R_{D}\times1mA$	
	$=>R_D=2/1$ m $A=2$ K Ω .	
.0.	Field effect transistors are different from BJTs in that they are	
G()	a) monopolar devices	25
	b) bipolar devices	: 0
	c) bidirectional device	-0,
	d) none of the mentioned	
89		1M
	Answer: a) monopolar devices	11/1
- 0	Explanation: FETs are called monopolar devices, with only one	
	carrier type, either electrons or holes providing current flow	
cill.	through the device. N-channel FETs employ electrons while p-	cs(
ail Co	channel FETs employ holes as source of current.	:\0
		20%
1		

	JFET is a carrier device.	.:.05
	a) Unipolar	
00	b) Bipolar	00
	c) Minority	
90	d) Majority	1M
90	Answer: d) Majority	1 IVI
	Explanation: The current flow in the device is due to majority	•.4
	carriers. In an n-type JFET, it is due to the electrons and in a p-	
;;(CS)	type JFET- it is due to the holes.	::05
	he n-channel JFET, the pinch off voltage is	37.
	a) not greater than 0	
	b) greater than or equal to 0	
	c) less than or equal to 0	
.0	d) not less than 0	
91	Answer: a) not greater than 0	1M
.:(0)	Explanation: The pinch off voltage for an N-channel JFET is	::05
	negative. The depletion region would extend into the N-channel	37.
	if the reverse bias in the gate to source voltage increases which	
	means that the gate to source voltage has to be negative since	
	the gate is N-type.	
.0	An N-channel JFET is	
	a) Always ON	
C.C.	b) Always OFF	ci()
÷(0)	c) Enhancement mode JFET	÷.05
	d) Has a p-type substrate	2011
92	Answer: a) Always ON	1M
72	Explanation: An N-channel is always ON depletion mode JFET	
.0	since the channel for current flow from source to drain is always	
	present. This is in contrast to a P-channel JFET which needs to	
cili	be provided with a channel for the flow of current.	cill
*(0)	*(C)	× O
		200

	A JFET has three terminals, namely	()
	a) cathode, anode, grid	
00	o) emitter, base, collector	
	c) source, gate, drain	
93	d) none of the above	1M
	Answer : c) source, gate, drain	
	Explanation: A JFET has three terminals, namely source, gate,	
	drain	60
:\0	The gate of a JFET is biased	ن رن
	a) reverse	
	o) forward	
	c) reverse as well as forward	
	d) none of the above	
94		1M
	Answer : a) reverse	
S	Explanation:Gate source p-n junction is always reverse biased	C)
×10-	because if it is forward then all the channel current will flow to	×10-
20.	the Gate and not to the source, ultimately damaging JFET.	20.
	A common base configuration of a pnp transistor is analogous to	(),
	of a JFET	
	a) common source configuration	
	o) common drain configuration	
05	c) common gate configuration	11/4
	d) none of the above	1M
20	Answer: c) common gate configuration Explanation: A common base configuration of a pun transistor is	0.0
	Explanation: A common base configuration of a pnp transistor is analogous to common gate configuration of a JFET	
	In a JFET, when drain voltage is equal to pinch-off voltage, the	
	depletion layers	
	a) almost touch each other	
	b) have large gap	1M
	c) have moderate gap	
	d) none of the above	
We land		100

COLL		coll
Majics	Answer : a) almost touch each other Explanation:when drain voltage is equal to pinch-off voltage, the depletion layers almost touch each other	Mailes
b) c)	In a JFET, IDSS is known as	1M
	operate. The gate-source voltage is just zero. No voltage needs to be applied to it A JFET has high input impedance because	
b) c)	it is made of semiconductor material input is reverse biased of impurity atoms none of the above	1M
Sill'ig.	Answer: b) input is reverse biased Explanation: A JFET has high input impedance becauseinput is reverse biased	
b)	JFET in properly biased condition acts as a current controlled current source voltage controlled voltage source voltage controlled current source	Mailes
99 99	Answer: c) voltage controlled current source Explanation:JFET in properly biased condition acts as avoltage	1M
Maji V	controlled current source	, Cailly

CUIII		
-5	The input resistance of a FET is of the order of	(5)
,	a) 100 Ω	
	b) 10 kΩ	400
	c) 1 MΩ	
	d) 100 MΩ	1M
100	A	
	Answer: d) 100 MΩ	
C.C.	Explanation: The input resistance of a FET is typically very high,	c'
5	on the order of mega ohms (M Ω).	*10
_	FET is which type of device?	20,
	b) 3 terminal voltage controlled device	
	c) 3 terminal current controlled device	
	d) 2 terminal current controlled device	
	Answer:b) 3 terminal voltage controlled device	
	Explanation:FET is a voltage-driven/controlled device, i.e. the	::05
	output current is controlled by the electric field applied& it is	
	three terminal device.	
	In which mode the JFET can operate?	
	a) depletion-mode only	
	b) enhancement-mode only	
	c) saturation mode only	
~(J),		
-55		.:05
	Answer: a) depletion-mode only	400
	Explanation:Unlike MOSFETs (metal-oxide-semiconductor field-	
	effect transistors), JFETs are predominantly depletion-mode	
	devices, meaning they are normally on and require a gate-	
	source voltage to turn them off. The physical structure and	
	doping of JFETs make it difficult to achieve enhancement mode	
39	operation.	::(0)
	The most common semiconductor used for manufacturing of	2
	100	a) 100 Ω b) 10 kΩ c) 1 MΩ d) 100 MΩ Answer: d) 100 MΩ Explanation:The input resistance of a FET is typically very high, on the order of mega ohms (MΩ). FET is which type of device? a) 4 terminal voltage controlled device b) 3 terminal voltage controlled device c) 3 terminal current controlled device d) 2 terminal current controlled device Answer:b) 3 terminal voltage controlled device Explanation:FET is a voltage-driven/controlled device, i.e. the output current is controlled by the electric field applied& it is three terminal device. In which mode the JFET can operate? a) depletion-mode only b) enhancement-mode only c) saturation mode only d) noise mode only Answer: a) depletion-mode only Explanation:Unlike MOSFETs (metal-oxide-semiconductor field-effect transistors), JFETs are predominantly depletion-mode devices, meaning they are normally on and require a gate-source voltage to turn them off. The physical structure and doping of JFETs make it difficult to achieve enhancement mode operation.

FET is

a) Gallium Arsenide

b) Indium Arsenide

c) Indium Gallium Arsenide

d) Silicon

Answer:-d

Explanation:Usually the semiconductor of choice is silicon. Some chip manufacturers, most notably IBM and Intel, use an alloy of silicon and germanium (SiGe) in MOSFET ...

Thank You winite winite

Mailcshinia

Mailcshinia

Mailcshil

Mailceninia

Mailcshinia

Malicshinia

Malicshinia

Matileshinia

Unit VI	Sensors and Transducers	Marks - 10
S. N.		Marks
	Which of the following is not a characteristic of an ideal	
	transducer?	
. 5	a) High dynamic range	. (
	b) Low linearity	
7.00	c) High repeatability	10.00
1.	d) Low noise	1M
	Angreen b) Lore linearity	
	Answer: b) Low linearity Explanation: An ideal transducer should show high linearity. A	
	linear system should produce exact output according to input.	
	Which of the following represent active transducer?	
	a) Strain gauge	X
0.	b) Thermistor	00.0
	c) LVDT	
	d) Thermocouple	
2.	u) Thermocoupie	1M
	Answer: d) Thermocouple	
	Explanation: Active transducers are self-generating type, they	
5	don't require external power to work while passive	. (
a i C	transducers require external power to work.	
60	Which transducer is known as 'self-generating transducer'?	100
	a) Active transducer	
	b) Passive transducer	
	c) Secondary transducer	
3.	d) Analog transducer	452
		1M
(5)	Answer: a) Active transducer	
200	Explanation: The name self-generating transducer is due to its	
0	property of working without the use of external power.	9

CUIII		c ()
*(0)	Which of the following is an analog transducer?	::05
2	a) Encoders	2011
	b) Strain gauge	
	c) Digital tachometers	
	d) Limit switches	
4.		1M
	Answer: b) Strain gauge	
(5)	Explanation: Analog transducers convert physical quantity to	. (5)
	analog signals while digital transducers convert physical	
.C.O.	quantity to digital signals. Strain gauge is an example of an	.C.O.
	Analog transducer.	
	What is the principle of operation of LVDT?	
* 6	a) Mutual inductance	
	b) Self-inductance	
COL	c) Permanence	ci()
×103	d) Reluctance	*(0)
		20.0
5.	Answer: a) Mutual inductance	1M
	Explanation: Linear variable differential transformer (LVDT) is a type of transformer used for measuring displacement, and	
	it has the same principle of operation of transformer.	
. (5)	· (5)	.65
Malicshini		
100		200
1		

Mailcshinia

Mailcshinia

Mailcshir

Majicshinja

	Which of the following can be measured using Piezo-electric	1.05
	transducer?	
(100	a) Velocity	
	b) Displacement	
	c) Force	
6.	d) Sound	1M
		1141
CUI,	Answer: c) Force	
ail Co	Explanation: Piezo-electric crystals produces an electric signal	::(0)
	when pressure applied. Examples are quartz, Rochelle salt.	87
	That is, it converts force into electric signals.	
	Capacitive transducer is used for?	
	a) Static measurement	
.0	b) Dynamic measurement	
	c) Transient measurement	
67	d) Both static and dynamic	C C
× 65 //		1M
0	Answer: b) Dynamic measurement	000
	Explanation: Capacitive transducers convert measurant into	
	changes in capacitance. Change in capacitance is caused by	
	change in dielectric or change in distance between plates.	
3	Which of the following is used in photo conductive cell?	
	a) Selenium	
6	b) Quartz	5
ail Co	c) Rochelle salt	Nilo V
	d) Lithium sulphate	200
	An array of Calariana	
8.	Answer: a) Selenium Explanation: Photo conductive action is the property of	1M
	reduction of resistance when exposed to light. Selenium shows	
	photoconductive action.	
•		*
1		

What are transducers?	
what are transducers?	Co.
a) They convert power from one form to another	
b) They convert work from one form to another	
c) They convert work to power	
d) They convert energy from one form to another 9.	
Answer: d) They convert energy from one form to another	
Explanation: Transducer are devices that convert energy from	
one form to another. This energy can be either mechanical	(3)
energy, light energy, heat energy or any other forms of energy.	
Active transducer do not require any type of additional power	
source for an operation.	
a) True	
b) False	
10. Answer: a) True	
Explanation: Active transducers do not require any additional	Co.
power source for converting the energy from one form to	
another as they work on the principle of energy conversion.	
One such example of active transducer is thermocouple.	
What type of energy conversion does a piezoelectric	
transducer perform?	
a) It converts mechanical energy to sound energy	
b) It converts sound energy to mechanical energy	5
c) It converts mechanical energy to electrical energy	
d) It converts electrical energy to mechanical energy	P
Answer: c) It converts mechanical energy to electrical energy 1M	
Explanation: A piezoelectric transducer converts mechanical	
energy to electrical energy. They are generally used to detect a	
knock or any impulsive force. They are also used in electronic	
drum pads to detect the impulse provided by the drumsticks.	(5)
	,

.:.(09)	The IC LM35 is used as which type of sensor?	.:.0
	a) Pressure sensor	
	b) Temperature sensor	
	c) Light sensor	
	d) Mechanical sensor	
12.	Answer: b)) Temperature sensor	1M
C.C.I.	Explanation: The LM35 IC manufactured by Texas Instruments	
:(0)	is used as a temperature sensor. The output voltage generated	.:(0
	by this IC is linearly proportional to the temperature in	
	Centigrade. The output voltage is directly proportional to the	
	temperature.	
	What is the range of frequency of the waves produced by the	
.0	Ultrasonic transducer?	
05	a) 20 Kilohertz to several Gigahertz	
C.C.I.	b) 1 Kilohertz to several Gigahertz	
:(0)	c) 40 Kilohertz to several Megahertz	.:(0
42	d) less than 20 Kilohertz	
13.		1M
	Answer: a) 20 Kilohertz to several Gigahertz	
	Explanation: Ultrasonic transducers produce frequency	
.0	ranging from 20 Kilohertz to several Gigahertz. Ultrasounds	
10)	have a wide range of application in many fields, but majorly	
C.C.	they are used for measuring the distance of objects.	
*(0	What is the full form of LVDT with respect to displacement	*(0
200	transducer?	
	a) Linear variable differential temperature	
	b) Linear variable differential transformer	
	c) Liquid visible differential transformer	
14.	d) Liquified visible differential transformer	1M
5	Answer: b) Linear variable differential transformer	
XIV	Explanation: LVDT stands for Linear variable differential	
	transformer. It is a displacement transducer that converts	

69	rectilinear motion to electric signals. They are used widely due	(
	to their robustness.	
	What is the effect on properties of LDR when light falls on it?	
	a) Its resistance remains same	
	b) Its resistance changes	
3	c) Its capacitance changes	
	d) Its inductance changes	
C15	Answer: b) Its resistance changes	
513.	Explanation: When light falls on LDR (Light dependant	1M
0.0	resistor) its resistance changes. It is inversely proportional to	20. 0
	the intensity of light. When light falls on LDR, the resistance	
	decreases and more current starts to flow through it. It is used	
	to measure the intensity of light.	
:0		
	What is measured by a hall effect transducer?	
S	a) Electric flux	
	b) Electric Field	X
0.0	c) Magnetic field	~ D."
	d) Temperature	
16.	Answer: c) Magnetic field	1M
	Explanation: Hall effect transducers or Hall effect sensor is	
3	used for measuring the magnitude of the magnetic field. The	
	output voltage produced by the sensor is directly proportional	
5	to the strength of the magnetic field passing through it.	
	Which of the following represents the application of inductive	
	transducers?	
	a) Displacement measurement b) Thickness measurement	
17	c) Both displacement and thickness measurement	
17.	d) None of the mentioned	1M
	Answer: c) Both displacement and thickness measurement	
	Explanation: Inductive transducers can be used for measuring	•. (
	displacement and thickness of thin plate etc.	
100		100

		Inductive potentiometers are used to measure	1 .:.0
		a) Voltage	
9		b) Current	900
		c) Displacement	
	18.	d) None of the mentioned	1M
		Answer: c) Displacement	
	05	Explanation: It has same function as linear potentiometers and	
		is used for measuring displacement.	
	5	Capacitive transducers can be used by	.:.05
		a) Measuring change in distance between plates	
400		b) Measuring change in area of plates	
		c) Change in a dielectric material	
		d) All of the mentioned	
	19.	• • • • • • • • • • • • • • • • • • • •	1M
		Answer: d) All of the mentioned	
		Explanation: Capacitance of a material is affected by area and	
	5	distance of separation of plates and dielectric material.	:.05
-07		distance of separation of places and distance material.	
		Capacitive transducers cannot be used as strain gauges.	
_		a) True	
		b) False	
	20 10		
	20.	Answer: b) False	1M
		Explanation: Strain to be measured is applied to parallel plates	6
i	5	of a capacitor and total displacement change will be	:03
20		proportional to strain.	
		Which of the following is correct for the capacitive transducer?	
*		a) Capacitive strain gauges	
		b) Capacitive tachometers	
	0	c) Capacitive pressure transducer	
	21.	d) All of the mentioned	1M
			CS C
	5	Answer: d) All of the mentioned	:.05
-01		Explanation: Capacitive transducers find application in	
*			*

	measurement of both strain, pressure and angular	:(5)
	displacement. Hence all of the mentioned can be treated as	
W.C.	application of capacitive transducer.	(1)00
	For a material capacitance increases with	
	a) Decrease in area of plates, all other factors constant	
. 0	b) Increase in distance between plates, all other factors	
	constant	
	c) Decrease in distance between plates, all other factors	
	constant	.:.05
	d) None of the mentioned	
22.	Answer: c) Decrease in distance between plates, all other	
22.	factors constant	1M
.?	Explanation: Capacitance can be represented as $C=\epsilon_0\epsilon_r A$ / d	
	Where,	
CILL	ϵ_r represents dielectric constant	c ()
; C	A is the area of plate	*:03
20	d is the distance between plates.	2011
	Which of the following quantities cannot be measured by	
	capacitive transducers?	
	a) Displacement	
	b) Speed	
	c) Moisture	
S	d) None of the mentioned	5
	Answer: d) None of the mentioned	
23.	Explanation: Capacitive transducer finds application in	1M
	measuring almost all quantities like displacement, thickness,	
	moisture speed etc.	
	· (S)	. (5)
100		0.00

.:.09	Thermometers are not possible using a capacitive transducer.	10
	a) True	
	b) False	
24.		1M
	Answer: b) False	
32	Explanation: Capacitive transducers can be used to measure	
	temperature in a way similar to moisture measurement.	
S	Who invented the piezoelectric effect?	- 6
× 0	a) Mary Elizabeth Barber	*10-
20,	b) Christian Doppler	
	c) Marie curie and Pierre curie	
25	d) Pierre curie and Jacques curie	
25.	Answer: d) Pierre curie and Jacques curie	1M
35:	Explanation: Piezoelectric effect was first invented and	
	explained by curie brothers, Pierre curie and Jacques curie in	
6	1980.	S
×		×10°
	Which of the following represents piezoelectric materials?	20.
	a) ADP	
	b) Quartz	
	c) Bernilite	
26.	d) All of the mentioned	
		1M
6	Answer: d) All of the mentioned	61
	Explanation: Quartz, ADP (Ammonium dihydrogen	XIV-
	Phosphate), and bernilite are examples of piezoelectric	200
	materials.	
	Which of the following quantities cannot be measured using	
	piezoelectric transducers?	
3	a) Pressure	
27.	b) Strain	1M
-6	c) Acceleration	(5)
XV	d) None of the mentioned	xiV-
		20.
0.		

	Answer: d) None of the mentioned	
	Explanation: Piezoelectric transducers can be used to measure	
.00	a wide range of quantities like pressure, acceleration, strain	000
	displacement etc.	
	In piezoelectric strain transducer voltage developed is	+
.0	to strain applied.	
05	a) Directly proportional	
	b) Inversely proportional	
	c) Equal	.:.05
28.	d) Independent	
20.		1.M
	Answer: a) Directly proportional	
	Explanation: For a piezoelectric strain transducer, as the	
.0	strain applied increases output voltage also increases.	
	Photoelectric devices are sensitive to all wavelength.	
: (0)	a) True	: 0
	b) False	
	D) raise	
29.	Answer: b) False	1M
	Explanation: Photoelectric devices are sensitive to certain	
:\2	wavelength only hence they should be calibrated before every	
	use.	
5	In photo emissive transducers, electrons are attracted by	(5)
X	*10	XIV
20.	a) Cathode	200
	b) Anode	
30.	c) Grid	
	d) Body	1M
3	Answer: b) Anode	
	Explanation: In photo emissive transducers, electrons emitted	
6	by the cathode are attracted by anode plates.	6
+ II 1	The quantity to be measured by an instrumentation system is	- XIV
24	The quality to be incasured by an instrumentation system is	4
31.	The quality to be measured by an instrumentation system is	

		2
.:.(53	a) Measurement	.:.05
	b) Measurand	2
100	c) Signal	
	Answer: b) Measurand	
	Explanation: The quantities that can be measured are called	
colle	as physical quantityor measurand.	
31100	LVDT is a	aile's.
W.o.	a) Active b) Passive	40.00
	c) Hybrid	
	Answer: b) Passive	
32.	Explanation: A passive transducer is an externally powered	1M
	transducer. This device cannot convert a physical signal into	- (
.:.05	an electrical signal on its own to another energy source, the	
	passive element. When connected, it transforms the motion by	
	the fluctuations generated from the power source.	400
	Which of the following materials can be used as	
	photoconductive transducer?	
	a) Selenium	
	b) Silicon	·
33.	c) Germanium	(5)
33.	d) All of the mentioned	1M
U.O.	Answer: d) All of the mentioned	60
·	Explanation: Photoconductive cells are materials which	
	changes conductivity on the application of light.	
	Semiconductor layer using silicon and germanium is known	
	as	
34.	a) Photo diodes	1M. (5)
N N	b) Photo junction diodes	IW
.C.o.	c) Photo material	0.0

:(03)	d) Photo sensitive materials	:.05
		27
	Answer: b) Photo junction diodes	
	Explanation: Photo junction diodes are semiconductor layers	
	formed by silicon and germanium which are used in	
.0	photovoltaic cells.	
	Which of the following are used to form photo transistors?	
	a) Two photo diodes	c ()
	b) Three photo diodes	.:.05
35.	c) Normal diodes	
35.	d) None of the mentioned	1M
	Answer: a) Two photo diodes	
	Explanation: Photo transistors are formed by placing two	
	photo diodes back to back.	
	Thermocouple is a	
	a) Primary device	c (
,:(0)	b) Secondary transducer	**(05)
	c) Tertiary transducer	2
36.	d) None of the mentioned	
30.		1M
	Answer: a) Primary device	
0	Explanation: Thermocouple is a device which converts	
	thermal energy to electrical energy and it can be treated as a	
	primary device.	S.
	Operation of thermocouple is governed by	*(0)
	a) Peltier effect	20.0
	b) Seebeck effect	
	c) Thomson effect	
37.	d) All of the mentioned	
37.		1M
	Answer: d) All of the mentioned	
S	Explanation: Operation of thermocouple is based on three	5
x O	major effects- Peltier, Thomson and seebeck, all describe the	xiQ y
	relation between current flow and temperature between two	

Cillin	colline colline	
.:.0	different metal.	.:.0
	Thermocouple cannot used for measurement of temperature	0
	of liquid.	
	a) True	
	b) False	
38.		435
	Answer: b) False	1M
	Explanation: Immersion type thermocouple can be used to	
	measure temperature of liquid, in which thermocouple is	. (5)
ai Co	immersed in liquid.	
.00	Active transducers are classified into	
	a) 4 types	
	b) 2 types	
. 0	c) 6 types	
	d) 8 types	
39.	Answer: a) 4 types	
39.	Explanation: Active transducers can be subdivided into four	IM
	types. They are as follows:	
	• Photovoltaic	
	• Thermoelectric	
. 0	• Piezoelectric	
	• Electromagnetic.	
	Active transducers develops	
.:.05	a) mechanical parameter	.:.05
	b) electrical parameter	
	c) chemical parameter	
	d) physical parameter	
40.		
. 0	Answer: b) electrical parameter	1M
05	Explanation: Active transducers are also known as self-	•.4
	generating type of transducers. They develop an electrical	6.01
::(59	voltage or current proportional to the quantity being	:.03
	measured.	2
₩	▼	*

	How do passive transducers develop electrical signals?	T
	a) using a transformer	
V.0.	b) using internal source	100
	c) using external source	
	d) using a diode	
41.		1M
	Answer: c) using external source	
	Explanation: Passive transducers develop electrical signals by	
. 65	means of an external source. They are usually known as	. ()
	externally power driven sources.	
00	Capacitive transduction involves	
	a) change in resistance	
	b) change in inductance	
. 0	c) change in resistance	
	d) change in capacitance	
42.		
	Answer: d) change in capacitance	1M
	Explanation: In capacitive transduction, measurand involves	
200	the change in the capacitance. Capacitance changes when the	
	distance between the plates is varied or by a change in the	
	dielectric.	
. 2	In electromagnetic based transduction measurand is	
0)	a) converted into mechanical force	
	b) converted into electromotive force	C
ijos	c) converted into chemical force	.:\0
2	d) converted into physical force	2
43.		
	Answer: b) converted into electromotive force	1M
	Explanation: Electromagnetic transduction involves the	
. 0	conversion of the measurand into electromotive force.	
.05	Magnetic flux is produced as a result of the relative motion	
	between the magnet and an electromagnet.	
::(03	Inductive transduction involves	:(0)
44.	a) change in self-inductance	1M

	b) change in capacitance	.:.(
	c) change in mutual inductance	
00	d) change in resistance	200
	Answer: a) change in self-inductance	
. 0	Explanation: In an inductive transduction based system,	
	measurand involves change in the self-inductance of the coil.	
	Photovoltaic transduction involves	
.:(05)	a) voltage generation heat	.:.(
	b) voltage generation through sound	
	c) voltage generation through light	
45.	d) voltage generation current	1M
.0	Answer: c) voltage generation through light	
	Explanation: In a photovoltaic transduction based system,	
	measurand is converted into voltage when the junction	
::(0)	between dissimilar elements is illuminated.	.:(0
	Analog transducers convert input into	3
	a) voltage	
	b) current	
	c) digital	
.0	d) analog	
46.		1M
S	Answer: d) analog	IM
a i C J	Explanation: The analog transducers convert input into analog	,;(
200	signal. The output is a continuous function of time. Strain	200
	gauge, LVDT, thermistor etc are analog transducers as they	
	produce outputs which are a continuous function of time.	
	Inverse transducer converts electrical into a physical	
3	quantity.	
47	a) True	
647,	b) False	1M
*103		×10
	Answer: a) True	200

Explanation: An inverse transducer is used to convert an electrical quantity into a physical quantity. For example, loudspeaker converts electrical signal into sound signal. Digital transducers produce analog output. a) True b) False 48. Answer: b) False Explanation: Digital transducers produce digital output in response to an input signal. A unique code is generated for each discrete value sensed. Selection of a transducer depends on the quantity being measured. a) True b) False 49. Answer: a) True Explanation: A transducer is selected based on the nature of the quantity that is being measured. For example temperature measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under a) zero electromagnetic fields c) varying electromagnetic fields d) infinite electromagnetic fields d) infinite electromagnetic fields for example the product of th			
loudspeaker converts electrical signal into sound signal. Digital transducers produce analog output. a) True b) False 48. Answer: b) False Explanation: Digital transducers produce digital output in response to an input signal. A unique code is generated for each disprete value sensed. Selection of a transducer depends on the quantity being measured. a) True b) False 49. Answer: a) True Explanation: A transducer is selected based on the nature of the quantity that is being measured. For example temperature measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under a) zero electromagnetic field b) constant electromagnetic fields c) varying electromagnetic fields d) infinite electromagnetic field Answer: c) varying electromagnetic fields 50. Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance, high value of output voltage and shorter	::03	Explanation: An inverse transducer is used to convert an	105
Digital transducers produce analog output. a) True b) False 48. Answer: b) False Explanation: Digital transducers produce digital output in response to an input signal. A unique code is generated for each discrete value sensed. Selection of a transducer depends on the quantity being measured. a) True b) False 49. Answer: a) True Explanation: A transducer is selected based on the nature of the quantity that is being measured. For example temperature measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under a) zero electromagnetic field b) constant electromagnetic fields c) varying electromagnetic fields d) infinite electromagnetic field Answer: c) varying electromagnetic fields 50. Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance, high value of output voltage and shorter		electrical quantity into a physical quantity. For example,	
a) True b) False 48. Answer: b) False Explanation: Digital transducers produce digital output in response to an input signal. A unique code is generated for each discrete value sensed. Selection of a transducer depends on the quantity being measured. a) True b) False 49. Answer: a) True Explanation: A transducer is selected based on the nature of the quantity that is being measured. For example temperature measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under a) zero electromagnetic field b) constant electromagnetic fields c) varying electromagnetic fields d) infinite electromagnetic field Answer: c) varying electromagnetic fields f) infinite electromagnetic fields d) infinite electromagnetic fields	(1)	loudspeaker converts electrical signal into sound signal.	400
48. Answer: b) False Explanation: Digital transducers produce digital output in response to an input signal. A unique code is generated for each discrete value sensed. Selection of a transducer depends on the quantity being measured. a) True b) False 49. Answer: a) True Explanation: A transducer is selected based on the nature of the quantity that is being measured. For example temperature measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under a) zero electromagnetic field b) constant electromagnetic fields c) varying electromagnetic fields d) infinite electromagnetic fields Answer: c) varying electromagnetic fields 50. Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance; high value of output voltage and shorter			
48. Answer: b) False Explanation: Digital transducers produce digital output in response to an input signal. A unique code is generated for each discrete value sensed. Selection of a transducer depends on the quantity being measured. a) True b) False 49. Answer: a) True Explanation: A transducer is selected based on the nature of the quantity that is being measured. For example temperature measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under a) zero electromagnetic field b) constant electromagnetic fields c) varying electromagnetic fields d) infinite electromagnetic fields Answer: c) varying electromagnetic fields 50. Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance; high value of output voltage and shorter		a) True	
Explanation: Digital transducers produce digital output in response to an input signal. A unique code is generated for each discrete value sensed. Selection of a transducer depends on the quantity being measured. a) True b) False 49. Answer: a) True Explanation: A transducer is selected based on the nature of the quantity that is being measured. For example temperature measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under		b) False	
response to an input signal. A unique code is generated for each discrete value sensed. Selection of a transducer depends on the quantity being measured. a) True b) False 49. Answer: a) True Explanation: A transducer is selected based on the nature of the quantity that is being measured. For example temperature measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under a) zero electromagnetic field b) constant electromagnetic fields c) varying electromagnetic fields d) infinite electromagnetic fields Answer: c) varying electromagnetic fields 50. Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance, high value of output voltage and shorter	48.	Answer: b) False	1M
each discrete value sensed. Selection of a transducer depends on the quantity being measured. a) True b) False 49. Answer: a) True Explanation: A transducer is selected based on the nature of the quantity that is being measured. For example temperature measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under a) zero electromagnetic field b) constant electromagnetic fields c) varying electromagnetic fields d) infinite electromagnetic fields Solution: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance, high value of output voltage and shorter	::(5)	Explanation: Digital transducers produce digital output in	::05
Selection of a transducer depends on the quantity being measured. a) True b) False 49. Answer: a) True Explanation: A transducer is selected based on the nature of the quantity that is being measured. For example temperature measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under a) zero electromagnetic field b) constant electromagnetic fields c) varying electromagnetic fields d) infinite electromagnetic fields 50. Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance; high value of output voltage and shorter		response to an input signal. A unique code is generated for	37,
measured. a) True b) False 49. Answer: a) True Explanation: A transducer is selected based on the nature of the quantity that is being measured. For example temperature measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under a) zero electromagnetic field b) constant electromagnetic fields c) varying electromagnetic fields d) infinite electromagnetic field Answer: c) varying electromagnetic fields 50. Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance; high value of output voltage and shorter		each discrete value sensed.	
a) True b) False 49. Answer: a) True Explanation: A transducer is selected based on the nature of the quantity that is being measured. For example temperature measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under	· I	Selection of a transducer depends on the quantity being	
49. Answer: a) True Explanation: A transducer is selected based on the nature of the quantity that is being measured. For example temperature measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under a) zero electromagnetic field b) constant electromagnetic fields c) varying electromagnetic field Answer: c) varying electromagnetic fields 50. Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance, high value of output voltage and shorter		measured.	
Answer: a) True Explanation: A transducer is selected based on the nature of the quantity that is being measured. For example temperature measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under	.0	a) True	
Explanation: A transducer is selected based on the nature of the quantity that is being measured. For example temperature measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under		b) False	
Explanation: A transducer is selected based on the nature of the quantity that is being measured. For example temperature measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under	C40	SIL	6
the quantity that is being measured. For example temperature measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under a) zero electromagnetic field b) constant electromagnetic fields c) varying electromagnetic fields d) infinite electromagnetic field Answer: c) varying electromagnetic fields 50. Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance, high value of output voltage and shorter	× Corr.	X	1M
measurement involves the use of temperature sensors whereas measurement of stress involves a strain gauge. Transducers must operate under a) zero electromagnetic field b) constant electromagnetic fields c) varying electromagnetic fields d) infinite electromagnetic field Answer: c) varying electromagnetic fields 50. Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance; high value of output voltage and shorter	2		3.0
whereas measurement of stress involves a strain gauge. Transducers must operate under			
Transducers must operate under a) zero electromagnetic field b) constant electromagnetic fields c) varying electromagnetic fields d) infinite electromagnetic field Answer: c) varying electromagnetic fields 50. Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance, high value of output voltage and shorter		•	
a) zero electromagnetic field b) constant electromagnetic fields c) varying electromagnetic fields d) infinite electromagnetic field Answer: c) varying electromagnetic fields 50. Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance, high value of output voltage and shorter			
b) constant electromagnetic fields c) varying electromagnetic fields d) infinite electromagnetic field Answer: c) varying electromagnetic fields 50. Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance, high value of output voltage and shorter			
c) varying electromagnetic fields d) infinite electromagnetic field Answer: c) varying electromagnetic fields 50. Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance, high value of output voltage and shorter			
d) infinite electromagnetic field Answer: c) varying electromagnetic fields 50. Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance, high value of output voltage and shorter	5	5,	(5)
Answer: c) varying electromagnetic fields 50. Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance, high value of output voltage and shorter		X X	l silv
Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance, high value of output voltage and shorter	.0.		.0.0
Explanation: A transducer should operate under strong electromagnetic fields. Generally transducers with a low value of output impedance, high value of output voltage and shorter	F0	Answer. c) varying electromagnetic netus	
electromagnetic fields. Generally transducers with a low value of output impedance, high value of output voltage and shorter	50.	Explanation: A transducer should operate under strong	1M
of output impedance, high value of output voltage and shorter	. 0		
			•.4
Maji Co Maji C			
	.:.63	.:.05	05
	*	*	*

.:.09	How many passive transducers are there?	.:.0
	a) 1	
	b) 3	
	c) 5	
	d) 7	
0	$\cdot \circ \cdot \circ \circ$	
5.1	Answer: b) 3	1M
	Explanation: There are three passive transducers. They are as	
dico	follows:	.:.0
	Resistor	
	Capacitor	
	Inductor.	
	Smallest change which a sensor can detect is	
. 0	a) Resolution	
05	b) Accuracy	
	c) Precision	
52.	d) Scale	::(0
02.		1M
	Answer: a) Resolution	
•	Explanation: Resolution is the smallest change a sensor can	*
	detect.	
	Thermocouple generate output voltage according to	
	a) Circuit parameters	
S	b) Humidity	
	c) Temperature	X
	d) Voltage	
	Answer: c) Temperature	1M
	Explanation: Thermocouple is a device which is capable of	
	producing output voltage according to input temperature.	
5	5	
0.		

colli		
.:.0	Sensor is a type of transducer.	.:.0
	a) True	
(00	b) False	
53.		1M
	Answer: a) True	1141
. 0	Explanation: Sensor is a device which enables measurement of	
.05	input value.	•.<
	Which of the following is not an analog sensor?	
::(05)	a) Potentiometer	::(05)
	b) Force-sensing resistors	
	c) Accelerometers	
54.	d) None of the mentioned	1M
.0	Answer: d) None of the mentioned	
	Explanation: All of the mentioned devices are analog sensors.	
C	Ais thermally sensitive resistor that exhibits a large	c/\
÷(0)	change in resistance.	*:05
	a) Thermistor	20,
	b) Resistance Thermometer	
ee .	c) Thermo couple	
55.	d) Semiconductor based sensor	1M
	Answer: a) Thermistor	
10)	Explanation: A thermistor is a thermally sensitive resistor that	
G ()	exhibits a large, predictable, and precise change in resistance	GIV.
ico	correlated to variations in temperature.	*:03
0.	measures temperature by correlating the resistance of	3.
	the RTD with temperature.	0,
	a) Thermistor	
	b) Resistance Thermometer	
56.	c) Thermo couple	1M
	d) Semiconductor based sensor	
6	6	(5)
xiO -	Answer: b) Resistance Thermometer	40
0.	Explanation: A Resistance Thermometer measures	20.

.:.0	temperature by correlating the resistance of the RTD with	.:.05
	temperature. An RTD consists of a film or, for greater	
600	accuracy, a wire wrapped around a ceramic or glass core.	600
	consists of two different metals connected at two	
	points.	
. 0	a) Thermistor	
0	b) Resistance Thermometer	•.<
2011	c) Thermocouple	
57.	d) Semiconductor based sensor	1M
	Answer: c) Thermocouple	2/1
	Explanation: Thermocouple consists of two different metals	
	connected at two points. The varying voltage between these	
	two points reflects proportional changes in temperature.	
?	Which type of temperature sensor is placed in Integrated	
	Circuits?	
C)	a) Thermistor	c (C)
	b) Resistance Thermometer	::05
	c) Thermocouple	27.
58.	d) Semiconductor based sensor	1M
	Answer: d) Semiconductor based sensor	
. 0	Explanation: A semiconductor based temperature sensor is	
	placed on Integrated Circuits. They are linear but have the	
	lowest accuracy.	
	Which sensor is linear and low accuracy?	
	a) Thermistor	
	b) Resistance Thermometer	
	c) Thermocouple	
	d) Semiconductor based sensor	
59.	• • • • • • • • • • • • • • • • • • • •	1M
05	Answer: d) Semiconductor based sensor	*.*
	Explanation: A semiconductor based temperature sensor is	
:(0)	placed on Integrated Circuits. They are linear but have the	::05
	lowest accuracy.	2011

.69	Inverse transducers are also known as	
	a) Open loop transducers	
000	b) Closed loop transducers	700
	c) Input transducers	
	d) Output transducers	
60.		1M
	Answer: d) Output transducers	
	Explanation: Output transducers are which converts electrical	
	quantity to non-electrical quantity, known as inverse	
	transducers.	
	Inverse transducer is system which converts	
	a) Electrical quantity to non-electrical quantity	
	b) Non-electrical quantity to electrical quantity	
. 0	c) Electrical quantity to electrical quantity itself	
	d) Non- electrical quantity to non-electrical quantity itself	• • •
61.	Answer: a) Electrical quantity to non-electrical quantity	1M
:(0)	Explanation: Transducers are devices which transfers	::05
	measurand which will be a non-electrical quantity to electrical	27
	quantity. Inverse transducers are the devices operating just	
· ·	opposite to transducers.	
	Which of the following is an inverse transducer	
. ?	a) Piezoelectric transducer	
	b) LVDT	
C.C.	c) Load cell	c (
	d) Bourdon tube	***
2		201
	Answer: a) Piezoelectric transducer	
62.	Explanation: Piezo electric transducers are devices which are	1M
	capable of converting electrical quantity to non-electrical	
.\0	quantity, which is an inverse transducer.	
6	S	6
XIV T		XIV-
0.		2.

Input transducers and inverse transducers are the same.	::0
a) True	
b) False	
63 Answer: b) False	1M
Explanation: Input transducers are devices which convert non-	1101
electrical quantity to electrical quantity and Inverse	
transducers are devices which convert electrical quantity to	
non-electrical quantity.	::05.
Which of the following cannot act as inverse transducer?	20,0
a) Quartz	
b) Barium titanate	*
c) Lead zirconate	
d) Cadmium	
64	1M
Answer: d) Cadmium	
Explanation: Quartz, Barium titanate and Lead zirconate are	
piezo electrical substances which are known for its ability to	
act as inverse transducers.	
Which type of transducer requires energy to be put into it in	<u> </u>
order to translate changes due to the measurand?	
a) active transducers	
b) passive transducers	
c) powered transducers	
d) local transducers	
65 Answer: b) passive transducers	1111
Explanation: Passive transducers are transducers that require	1M
energy to translate changes due to the measurand. Active	
transducers convert one form of energy directly into another.	
For example photovolatic cell in which light energy is	
converted into electrical energy.	
:,0" :,0"	
	97,

69	Active transducers work on the principle of	105
	a) energy conversion	
.00	b) mass conversion	00
	c) energy alteration	
	d) volume conversion	
66		1M
	Answer: a) energy conversion	
S	Explanation: Active transducers work on the principle of	6
*10	energy conversion. They convert one form of energy to	*(0)
0.0	another. They don't require any power to operate.	20.0
	Accuracy is	
	a) ability of the transducer or sensor to see small differences	
	in reading	
	b) ability of the transducer or sensor to see small differences	
S	in reading	6
,; (C)	c) algebraic difference between the indicated value and the	*:05
200	true or theoretical value of the measurand	200
	d) total operating range of the transducer	
67		1M
	Answer: c) algebraic difference between the indicated value	
:\2	and the true or theoretical value of the measurand	
	Explanation: Accuracy describes the algebraic difference	
S	between the indicated value and the true or theoretical value	5
	of the measurand. Resolution is the ability of the transducer or	xiQ ³
200	sensor to see small differences in reading. Precision refers to	3.0
	the degree of repeatability of a measurant.	
	The smallest change in measurant that will result in a	
. 0	measurable change in the transducer output is called	
	a) offset	
67	b) linearity	
.: 65	c) resolution	
	d) threshold	
W.		

		GN
× Co		il Co
	Answer: d) threshold	200
	Explanation: The threshold of the transducer is the smallest	
	change in measurant that will result in a measurable change in	
	the transducer output. Offset is the output that will exist when	
	it should be zero. Linearity shows closeness of a transducer's	
	calibration curve to a specific straight line with in a given	
C.	percentage of full scale output.	e C
× 0	Unwanted signal at the output due either to internal sources	*:03
200	or to interference is called	2000
	a) offset	
	b) noise	
	c) drift	
.0	d) threshold	
68		1M
C	Answer: b) noise	c C
* 0	Explanation: Noise is the unwanted signal at the output due	*:05
2	either to internal sources or to interference. Offset is the	200
	output that will exist when it should be zero. The threshold of	
	the transducer is the smallest change in measurant that will	
	result in a measurable change in the transducer output.	
0	The ability of the sensor to see small differences in reading is	
	called	
C)	a) resolution	ci ^c
	b) drift	*:03
2	c) offset	200
	d) linearity	
69	Answer: a) resolution	1M
	Explanation: The ability of the sensor to see small differences	
0	in reading is called the resolution of the sensor. Offset is the	
	output that will exist when it should be zero. Linearity shows	
	closeness os a transducer's calibration curve to a specific	S
X	straight line with in a given percentage of full scale output.	XIV"
		0.0

.:.0	Linearity of transducer is	.:.0
	a) Closeness of the transducer's calibration curve to a special	
	curved line within a given percentage of full scale output	
	b) Closeness of the transducer's calibration curve to a special	
	straight line within a given percentage of full scale output	
.0	c) Closeness of the transducer's calibration curve to a special	
05	straight line within a given percentage of half scale output	
	d) Closeness of the transducer's calibration curve to a special	
::(05)	curved within a given percentage of half scale output	::05
2		
70	Answer: b) Closeness of the transducer's calibration curve to a	1M
	special straight line within a given percentage of full scale	
	output	
	Explanation: Linearity of transducer is closeness of the	
	transducer's calibration curve to a special straight line within	
	a given percentage of full scale output. Basically, it reflects that	c C
::05	the output is in some way proportional to the input. A linear	3.05
	sensor produces an output value which is directly	
	proportional to the input.	
	What is the principle behind photoelectric transducers?	
	a) Conversion of wind energy to electrical energy	
	b) conversion of light energy to electrical energy	
6	c) conversion of mechanical energy to electrical energy	6
	d) conversion of electrical energy to light energy	xiQ2
20.0		20.0
70	Answer: b) conversion of light energy to electrical energy	1M
	Explanation: Photoelectric transducers are based on the	
	principle of conversion of light energy into electrical energy.	
	This is done by causing the radiation to fall on a	
5	photosensitive element and measuring the electrical current	3
XIV	so generated with a sensitive galvanometer directly or after	il Co
20.	suitable amplification.	00-

. 6	Which of the following material is used to build photovoltaic	
	cells?	
(00	a) Selenium	400
	b) celenuim	
	c) silicon	
.0	d) iron	
.(0)		
71	Answer: a) selenium	1M
	Explanation: Photovoltaic or barrier layer cells usually consist	
2	of a semiconducting substance, which is generally selenium	0,7
	deposited on a metal base which may be iron and which acts as	
	one of the electrodes. The semiconducting substance is	
	covered with a thin layer of silver or gold deposited by	
.0	cathodic deposition in a vacuum. This layer acts as a collecting	
.(0)	electrode.	
S	Photo-diodes work in	
*(0)	a) forward biased	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>
0,	b) reverse biased	20.0
	c) independent of forward and reverse biasing	
	d) any configuration	
78	Annual Daniero Blanda	1M
	Answer: b) reverse biased	
	Explanation: The photodiode is a P-N junction semiconductor	
65	diode. It always operated in the reversed biased condition.	
	The light is always focused through a glass lens on the junction	
	of the photo diode. Photovoltaic cells need an external electrical supply to	100
	function.	
	a) True	
	b) False	
700	b) Tuise	434
79		1M
. (5)	Answer: b) False	•. 0
	Explanation: Photovoltaic cells are very robust in	
,00	construction, need no external electrical supply and produce a	0.0

	Collin			0
	3	photocurrent sometimes stronger than other photosensitive		2
		elements. Typical photocurrents produced by these cells are		
9		as high as 120 mA/lumen. At constant temperature, the	400	
		current set up in the cell usually shows a linear relationship		
		with the incident light intensity.		
	3	Thermistor is used to measure		
		a) temperature		
	5)	b) pressure		3)
		c) height		
200		d) displacement	7,0	
		Answer: a) temperature		
	80	Explanation: Thermistor is used to measure temperature. It is	1M	
		a temperature transducer. With a change in temperature its		* . *
		resistance changes. Thus its working principle is variable		
. (5	resistance. Thermistors are the oxides of certain metals like	. ()	9
		manganese, cobalt and nickel which have large negative		,
7.0		temperature coefficient, i.e. resistance decreases with increase	V.0.	
		in temperature.	,	
		Inverse transducers are also known as		
	. 0	a) Open loop transducers		
		b) Closed loop transducers		٠. ١
		c) Input transducers		0
	81	d) Output transducers	1M	9
		Answer: d) Output transducers	1101	
~		Explanation: Output transducers are which converts electrical	200	
		quantity to non-electrical quantity, known as inverse		
		transducers.		
	.0	Inverse transducer is system which converts		
	(1)	a) Electrical quantity to non-electrical quantity		
		b) Non-electrical quantity to electrical quantity		1
	82	c) Electrical quantity to electrical quantity itself	1M	
200		d) Non- electrical quantity to non-electrical quantity itself		
L				

::(03)	;;(C3)	<i></i> (C
	Answer: a) Electrical quantity to non-electrical quantity	20,0
	Explanation: Transducers are devices which transfers	
	measurand which will be a non-electrical quantity to electrical	
	quantity. Inverse transducers are the devices operating just	
3	opposite to transducers.	
	Which of the following is an inverse transducer	
5	a) Piezoelectric transducer	
	b) LVDT	
	c) Load cell	
	d) Bourdon tube	
83		1M
. 0	Answer: a) Piezoelectric transducer	
	Explanation: Piezo electric transducers are devices which are	
	capable of converting electrical quantity to non-electrical	
**(03)	quantity, which is an inverse transducer.	110
20.	Input transducers and inverse transducers are the same.	
	a) True	
	b) False	
	Answer: b) False	
84	Explanation: Input transducers are devices which convert non-	1M
	electrical quantity to electrical quantity and Inverse	
5	transducers are devices which convert electrical quantity to	
	non-electrical quantity.	
.00	Which of the following cannot act as inverse transducer?	100
	a) Quartz	
	b) Barium titanate	
	c) Lead zirconate	
85	d) Cadmium	1M
	Answer: d) Cadmium	21.1
5	Explanation: Quartz, Barium titanate and Lead zirconate are	. (
	piezo electrical substances which are known for its ability to	
L	act as inverse transducers.	V.O.

	Which of the following has the widest range of temperature	٠. (
	measurement?	
0.00	a) RTD	40.00
	b) Thermocouple	
	c) Thermistor	
86	d) Mercury thermometer	1M
500	Answer: b) Thermocouple	IM
	Explanation: Thermocouple has the widest range of	X
	temperature measurement from -184°C to +2300°C. RTD has a	
	range of -200°C to +850°C. Thermistor has a range of 0°C to	
	100^{o}C where as conventional mercury thermometers range is -	
	$37^{\circ}\text{C to} + 356^{\circ}\text{C}.$	
	The junction at a higher temperature in thermocouple is	
	termed as measuring junction.	
5	a) True	
	b) False	
100	Vio.	V.O.
	Answer: a) True	
87	Explanation: The junction at a higher temperature in	1M
. 0	thermocouple is termed as measuring junction. The junction	
	at lower temperature in the thermocouple is called the	
	reference temperature. The cold junction is usually kept at	
.:.65	0°C.	.:.0
		200
	When two wires of different material are joined together at	
	either end, forming two junctions which are maintained at a	
	different temperature, a force is generated.	
88	a) thermo-motive	1M
	b) electro-motive	
C.	c) chemical reactive	
*(0)	d) mechanical	wi/C
0.		
		(),

.:.09	Answer: a) thermo-motive	.:.05
	Explanation: When two wires of different material are joined	
9	together at either end, forming two junctions which are	
	maintained at a different temperature, a thermo-motive force	
	is generated causing a current to flow around the circuit. This	
. 0	arrangement is called thermocouple. The junction at higher	
	temperature in thermocouple is termed as measuring	*.
	junction. The junction at lower temperature in the	
::(05)	thermocouple is called the reference temperature.	:.05
	The junction at a lower temperature in the thermocouple	20.0
	called measuring junction.	
	a) True	
	b) False	
.0		
89	Answer: b) False	1M
	Explanation: The junction at a lower temperature in the	
*(0)	thermocouple is called the reference temperature. The cold	::05
	junction is usually kept at 0° C. The junction at a higher	2011
	temperature in thermocouple is termed as measuring	
	junction.	
	The lower temperature junction in thermocouple is	
.0	maintained at	
	a) -273 K	
S	b) 0 K	S
OSI CS.	c) -327 K	×.O
	d) 273 K	20.
90	Answer: d) 273 K	1M
	Explanation: The lower temperature junction in thermocouple	
.2	is maintained at 273 K (0 0 C). The junction at lower	
	temperature in the thermocouple is called the reference	
S	temperature. The junction at higher temperature in	6
×\C	thermocouple is termed as measuring junction.	×10°
		20.

69	RTD stands for	0
	a) resistance temperature device	
9	b) resistance temperature detector	400
	c) reluctance thermal device	
	d) resistive thermal detector	
91 : 0	Answer: b) resistance temperature detector	114
91	Explanation: RTD stands for Resistance Temperature Device. It	1M
	is a passive sensor and requires current excitation to produce	
.:.09	an output voltage. RTD has very low temperature coefficient.	.:.0
	Voltage drop across RTD is much larger than thermocouple	
	output voltage.	
	Thermister is used to measure	
	a) temperature	
.0	b) pressure	
	c) height	
	d) displacement	
::(05	::(0)	(
	Answer: a) temperature	
92	Explanation: Thermistor is used to measure temperature. It is	1M
	a temperature transducer. With a change in temperature its	
	resistance changes. Thus its working principle is variable	
.0	resistance. Thermistors are the oxides of certain metals like	
	manganese, cobalt and nickel which have large negative	
C	temperature coefficient, i.e. resistance decreases with increase	
*(0)	in temperature.	,,(0
200	What is the principle of operation of LVDT?	20.
	a) Mutual inductance	
	b) Self-inductance	
	c) Permanence	
93	d) Reluctance	1M
	Answer: a) Mutual inductance	
S	Explanation: Linear variable differential transformer (LVDT)	
×,C	is a type of transformer used for measuring displacement, and	wi/C
	it has the same principle of operation of transformer.	

	Which of the following can be measured using Piezo-electric	(
	transducer?	
00	a) Velocity	00
	b) Displacement	
	c) Force	
94	d) Sound	1M
dillo	Answer: c) Force	
	Explanation: Piezo-electric crystals produces an electric signal	
	when pressure applied. Examples are quartz, Rochelle salt.	
900	That is, it converts force into electric signals.	00
	Capacitive transducer is used for?	
	a) Static measurement	
. 0	b) Dynamic measurement	
05	c) Transient measurement	
	d) Both static and dynamic	
95	;;C ³	1M
	Answer: b) Dynamic measurement	20,
	Explanation: Capacitive transducers convert measurant into	
	changes in capacitance. Change in capacitance is caused by	
	change in dielectric or change in distance between plates.	
:30	Which of the following is used in photo conductive cell?	
	a) Selenium	
5	b) Quartz	
ijos	c) Rochelle salt	×10
20.0	d) Lithium sulphate	20.0
96	Answer: a) Selenium	1M
	Explanation: Photo conductive action is the property of	
	reduction of resistance when exposed to light. Selenium shows	
	photoconductive action.	
(5)	. 65	
V.0.		100

(2)	What are transducers?	(
	a) They convert power from one form to another	
	b) They convert work from one form to another	
	c) They convert work to power	
	d) They convert energy from one form to another	
97	Answer: d) They convert energy from one form to another	1M
	Explanation: Transducer are devices that convert energy from	
::(0)	one form to another. This energy can be either mechanical	.:(0
	energy, light energy, heat energy or any other forms of energy.	37,
	Active transducer do not require any type of additional power	
	source for an operation.	Ť
	a) True	
.0	b) False	
98	Answer: a) True	1M
*(C)	Explanation: Active transducers do not require any additional	xi(C
0.	power source for converting the energy from one form to	
	another as they work on the principle of energy conversion.	
	One such example of active transducer is thermocouple.	
	What type of energy conversion does a piezoelectric	
3	transducer perform?	
	a) It converts mechanical energy to sound energy	
S	b) It converts sound energy to mechanical energy	
	c) It converts mechanical energy to electrical energy	
0.0	d) It converts electrical energy to mechanical energy	10.0°
99		1M
	Answer: c) It converts mechanical energy to electrical energy	
	Explanation: A piezoelectric transducer converts mechanical	
	energy to electrical energy. They are generally used to detect a	
	knock or any impulsive force. They are also used in electronic	
5	drum pads to detect the impulse provided by the drumsticks.	
W.o.		No
•		

CUII		
ico	The ICIMatis and as which time of annual	die
W.	The IC LM35 is used as which type of sensor? a) Pressure sensor	400
	b) Temperature sensor	
	c) Light sensor	
0	d) Mechanical sensor	
cin's	, a) Mechanical sensor	
.:.05	Answer: b) Temperature sensor	1M
100	Explanation: The LM35 IC manufactured by Texas Instruments	
	is used as a temperature sensor. The output voltage generated	
	by this IC is linearly proportional to the temperature in	
	Centigrade. The output voltage is directly proportional to the	
3	temperature.	
×		*10
	What is the full form of LVDT with respect to displacement	
	transducer?	
	a) Linear variable differential temperature	
	b) Linear variable differential transformer c) Liquid visible differential transformer	
	d) Liquified visible differential transformer	
	u) Liquineu visible unierendal transformer	
5	Answer: b)Linear variable differential transformer	
101	Explanation: LVDT stands for Linear variable differential	1M
00	transformer. It is a displacement transducer that converts	100
	rectilinear motion to electric signals. They are used widely due	
	to their robustness.	
	· (2)	•. (

.:.(5)	What is the effect on properties of LDR when light falls on it?	.:.0
	a) Its resistance remains same	
W.	b) Its resistance changes	
	c) Its capacitance changes	
	d) Its inductance changes	
102	Answer: b) Its resistance changes	1M
	Explanation: When light falls on LDR (Light dependent	1101
	resistor) its resistance changes. It is inversely proportional to	
.:(0)	the intensity of light. When light falls on LDR, the resistance	.:.05
	decreases and more current starts to flow through it. It is used	2
	to measure the intensity of light.	
· ·	What is measured by a hall effect transducer?	
	a) Electric flux	
• . (b) Electric Field	
	c) Magnetic field	
C102	d) Temperature	c/l
103	Answer: c) Magnetic field	1M
20	Explanation: Hall effect transducers or Hall effect sensor is	3
	used for measuring the magnitude of the magnetic field. The	
	output voltage produced by the sensor is directly proportional	
	to the strength of the magnetic field passing through it.	
Maiicshini	Thank You	Mailcshi

Mailcshinia

Mailcshinia

Mailcshinia

Malicshir