SCALAR AND VECTOR ASSIGNMENT 2

1.	If a vector $2\hat{i} + 3\hat{j} + 8\hat{k}$ is	perpendicular to the vector
	$4\hat{j}-4\hat{i}+lpha\hat{k}$. Then the value of $lpha$ is	
	(a) —l	(b) $\frac{1}{2}$
	(c) $-\frac{1}{2}$	(d) 1
2.	If two vectors $2\hat{i} + 3\hat{j} - \hat{k}$ and	d $-4\hat{i}-6\hat{j}-\lambda\hat{k}$ are parallel to
	each other then value of λ be	
	(a) 0	(b) 2
	(c) 3	(d) 4
3.	A body, acted upon by a force of 50 N is displaced through a distance 10 <i>meter</i> in a direction making an angle of 60° with the force. The work done by the force be	
	(a) 200 J	(b) 100 J
	(c) 300	(d) 250 J
4.	A particle moves from position	$3\hat{i} + 2\hat{j} - 6\hat{k}$ to $14\hat{i} + 13\hat{j} + 9\hat{k}$
	due to a uniform force of $(4\hat{i} +$	$\hat{j} + 3\hat{k}N$. If the displacement in
	meters then work done will be	
	(a) 100 J	(b) 200 J
	(c) 300 J	(d) 250 J
ۍ.	Consider two vectors $\vec{F}_1 = 2\hat{i}$ magnitude of the scalar product of	$+5\hat{k}$ and $\vec{F}_2 = 3\hat{j} + 4\hat{k}$. The f these vectors is
	(a) 20	(b) 23
	(c) $5\sqrt{33}$	(d) 26
6.	Consider a vector $\vec{F} = 4\hat{i}$	$-3\hat{j}$. Another vector that is
	perpendicular to \vec{F} is	
	(a) $4\hat{i} + 3\hat{j}$	(b) $6\hat{i}$

(c) $7\hat{k}$ (d) $3\hat{i} - 4\hat{j}$

7. Two vectors \vec{A} and \vec{B} are at right angles to each other, when

- (a) $\vec{A} + \vec{B} = 0$ (b) $\vec{A} \vec{B} = 0$
- (c) $\vec{A} \times \vec{B} = 0$ (d) $\vec{A} \cdot \vec{B} = 0$

8. If $\overrightarrow{A} \times \overrightarrow{B} = \overrightarrow{B} \times \overrightarrow{A}$ then the angle between *A* and *B* is

(a)
$$\pi / 2$$
 (b) $\pi / 3$

- (c) π (d) $\pi/4$
- 9. If $\vec{A} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{B} = 2\hat{i} 2\hat{j} + 4\hat{k}$ then value of $|\vec{A} \times \vec{B}|$ will be
 - (a) $8\sqrt{2}$ (b) $8\sqrt{3}$
 - (c) $8\sqrt{5}$ (d) $5\sqrt{8}$
- The torque of the force $\vec{F} = (2\hat{i} 3\hat{j} + 4\hat{k})N$ acting at the point $\vec{r} = (3\hat{i} + 2\hat{j} + 3\hat{k})m$ about the origin be
 - (a) $6\hat{i} 6\hat{j} + 12\hat{k}$ (b) $17\hat{i} 6\hat{j} 13\hat{k}$ (c) $-6\hat{i} + 6\hat{j} - 12\hat{k}$ (d) $-17\hat{i} + 6\hat{j} + 13\hat{k}$

The area of the parallelogram whose sides are represented by the vectors $\hat{j} + 3\hat{k}$ and $\hat{i} + 2\hat{j} - \hat{k}$ is

(a) $\sqrt{61}$ sq.unit (b) $\sqrt{59}$ sq.unit (c) $\sqrt{49}$ sq.unit (d) $\sqrt{52}$ sq.unit

The position of a particle is given by $\vec{r} = (\vec{i} + 2\vec{j} - \vec{k})$ momentum $\vec{P} = (\vec{3}\vec{i} + 4\vec{j} - 2\vec{k})$. The angular momentum is perpendicular to

- (a) *x*-axis
- (b) y-axis
- (c) z-axis
- (d) Line at equal angles to all the three axes
- 13. Two vector A and B have equal magnitudes. Then the vector A + B is perpendicular to
 - (a) $A \times B$ (b) A B
 - (c) 3A 3B (d) All of these